
NODES, MODES 
AND FLOW CODES 

Massively parallel supercomputers seem the best hope 
for achieving progress on 'grand challenge' problems 
such as understanding high-Reynolds-number turbulent flows. 

George Em Korniodol<~is and Steven A Orszog 

Understanding turbulent flows is a "grand challenge"1 

comparable to other prominent scientific problems such as 
the large-scale structure of the universe and the nature of 
subatomic particles. In contrast to many of the other 
grand challenges, progress on the basic theory of turbu­
lence translates nearly immediately into a wide range of 
engineering applications and technological advances that 
affect many aspects of everyday life. 

Numerical prediction of fluid flows is at the heart of 
understanding and modeling turbulence. However, such 
computational fluid dynamics simulations challenge the 
capabilities of both algorithms and the fastest available 
supercomputers. In 1970 Howard Emmons2 reviewed the 
possibilities for numerical modeling of fluid dynamics and 
concluded: "The problem of turbulent flows is still the big 
holdout. This straightforward calculation of turbulent 
flows-necessarily three-dimensional and nonsteady­
requires a number of numerical operations too great for 
the foreseeable future." However, within a year of the 
publication of his article, the field of direct numerical 
simulation (DNS) of turbulence was initiated with the 
achievement of accurate simulations of wind-tunnel flows 
at moderate Reynolds numbers.3 (The Reynolds number 
a dim~nsionless measure of the degree of nonlinearity of~ 
flow, IS defined as R = vrmsL / v, where v rms is the rms 
vel~city, vis the kinematic viscosity of the fluid, and Lis a 
typical length scale at which the energy maintaining the 
flow is input. At sufficiently high Reynolds numbers, 
flows become turbulent.) In the last 20 years, the field of 
turbulence simulation has developed in two directions. 
First, turbulence simulations are now regularly per­
formed in simple geometries, and extensive databases of 
flow fields have been constructed for the analysis of 
turbulent and even laminar-turbulent transitional inter­
actions.4 Second, simulations of turbulent flows in proto­
type complex geometries are now emerging.5 (See figure 1 
and the cover of this issue.) 
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Incompressible fluid flows are governed by the 
Navier-Stokes equations, 

av - = v X w - VII + v V2 v (1) 
at 

V·v = 0 (2) 

where v is the velocity field, w = V X v is the vorticity field 
and IT = p + % v2 is the pressure head, where p is th~ 
pressure. In direct numerical simulation, the Navier­
Stokes equations are solved at all scales for which there is 
appreciable kinetic energy. At large Reynolds numbers, 
the Kolmogorov theory of small scales in turbulence shows 
that eddies are appreciably excited at scales ranging in 
size from L, at which energy input takes place, down to 
'TJ = L / R 314

, at which viscous dissipation becomes signifi­
cant. (See the article by U riel Frisch and Orszag in 
PHYSICS TODAY, January 1990, page 24.) Since turbulent 
flows are necessarily time dependent and three-dimen­
sional and since each excited eddy requires at least one 
grid point (or mode) to describe it, as R increases the 
spatial resolution, or number of modes, required to 
describe the flow increases at least as fast as (R314

)3 . 

With conventional DNS methods, the time step must 
be no larger than 'Tj / v rms in order to resolve the motion of 
small eddies as they are swept around by large ones with 
rms velocity vrms . Because large-scale turbulence evolves 
on a time scale of order L/ v rms , on the order of R 314 time 
steps are required. Thus the computational work require­
ment (embodied in the number of modes times the number 
of tiJ?e steps) for DNS of turbulence scales roughly as R3 

and mcreases by an order of magnitude if R is doubled. 
!his. type of ~apid increase in resolution and correspond­
mg mcrease m computational work requirements is the 
challenge of DNS at high Reynolds numbers and necessi­
tates the use of theory to remove degrees of freedom and 
simplify the computations. 

Two alternative approaches aim to alleviate the 
compu~ation~l re~uirements ofDNS of turbulence: Large­
eddy simulatiOns use a fixed spatial resolution and the 
effec~s of eddies th~t are not resolved are modeied using 
gra.dient tra~sport Ideas such as eddy viscosity. (See the 
article by Fnsch and Orszag.) Reynolds-averaged Navier­
Stokes simulations model all turbulent fluctuations theo-
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Effects of riblets on turbulence as simulated by a spectral-element method on the Delta 
Touchstone computer. Colors indicate the instantaneous magnitude of the streamwise 
component of th e velocity; the highest values occur in the middle of the channel. Values are 
shown at three different cross-flow planes. The mean flow is from left to right, and the 
turbulence is fully developed and statistically steady at a Reynolds number (based on flow 
rate) of 3500. Computed turbulence intensities indicate that the reduction of fluctuations 
near the wall with riblets (bottom) results in a 6% percent drag reduction in this geometry. 
(Courtesy of Douglas Chu, Catherine H. Crawford and Ronald D. Henderson, Princeton 
University.) Figure 1 

retically or empirically-not just the ones smaller than 
the grid spacing. Recently we have studied a variant of 
Reynolds-averaged Navier-Stokes modeling called very­
large-eddy simulation, which has some features of large­
eddy simulation: All statistically isotropic eddies are 
modeled, while large-scale anisotropic eddies are simulat­
ed explicitly.7 

The four images on the cover of this issue illustrate 
the effect of increasing Reynolds number on flow past a 
sphere. The top three images, at R = 300 (top image), 500 
and 1000, are direct numerical simulations. The bottom 
image, at R = 20 000, is a large-eddy simulation. Each 
image shows the surface at which the axial velocity is 90% 
of the free stream velocity, colored according to the local 
vorticity magnitude. Red indicates high vorticity; white, 
low vorticity. These simulations were performed on an 
Intel iPSC/860 32-node hypercube using a parallel spec­
tral-element Fourier code, as discussed later. The large­
scale flow pattern is present at all these Reynolds 
numbers, but for R ;<;: 1000 the excitation of small scales 
(indicated by vorticity) increases rapidly, making DNS 
impractical at current capabilities. 

The need for parallel processing 
There is now a broad consensus that major discoveries in 
key applications of turbulent flows would be within grasp 
if computers 1000 times faster than today's conventional 

supercomputers were available, assuming equal progress 
in algorithms and software to exploit that computer power 
and effective visualization techniques to use the results of 
the computations. This consensus has been realized in the 
High Performance Computing and Communications Ini­
tiative, whose goal is the development and application of 
teraflop (1012 floating-point operations per second) com­
puters in the second half of the 1990s. This thousandfold 
improvement in useful computing capability will be 
accompanied by a hundredfold improvement in available 
computer networking capability. 

It is estimated that a teraflop computer could perform 
Reynolds-averaged Navier-Stokes calculations of flow 
past a complete aircraft, large-eddy simulation of flow past 
a wing and I)NS of flow past an airfoil, all at moderate 
Reynolds number (R on the order of 108). Following 
Andrei Kolmogorov's scaling arguments, similar esti­
mates show that DNS of a complete aircraft will require at 
least an exaflop (1018 flops) computer.8 This example of 
computing flow past an aircraft is typical: Even with 
teraflop computing power, progress on real engineering 
applications will require synergism among computing, 
theory (to describe the effects of small-scale motions) and 
prototype experiments9 (to elucidate fundamental phys­
ical phenomena). 

We will be able to achieve teraflop speeds in this 
decade only by using massively parallel supercomputer 
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architectures. This development will fit the pattern of 
major changes in computer technology and architecture 
that have occurred about every 20 years since the 1940s. 
Early computers, motivated by the needs of World War II, 
were sequential (von Neumann) machines in which one set 
of arithmetic operations had to be completed before 
further operations could be executed. By the early 1960s 
technological improvements in speeds and densities of 
electronic components led to an increase in computer 
speeds and memory sizes by about a factor of 1000 over the 
early prototype computers. In the 1960s sequential 

Node P 
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SIMD and MIMD architectures. In a single­
instruction, multiple-data-stream computer (a), 
a single control unit manages the operations of 
P processing elements, each with a local 
memory. Each processing element performs 
precisely the same operation or stays idle 
during each clock period of the computer. In 
a multiple-instruction, multiple-data-stream 
computer (b), independent control units 
manage the operations of the processing 
elements. Each processing element may 
execute asynchronously from the others; the 
computations are synchronized at various 
times by sending messages between 
processing elements. In either architecture, 
interconnections between processing elements 
can be local (mesh topology) or global 
(hypercube, nonblocking switch, shared 
memory and so on). Figure 2 

supercomputers gave way to supercomputers with pipe­
lined architectures, such as the Control Data Corp 6600 
and 7600 computers. Then in the late 1970s, vector 
supercomputers such as those of Cray Research Inc were 
introduced, in which vector operations on 64 elements 
were combined with pipelined operations. By the mid-
1980s computer speeds had increased from their mid-
1960s values by another factor of roughly 1000 (a factor of 
2 every two years) as a result of component speeds (and 
densities) increasing by a factor of 25, vector and 
pipelining architectural improvements yielding roughly a 
factor-of-10 increase, and the first parallel application of 
several processors to the same job yielding an efficiency 
factor of nearly 4 on the Cray XMP and Cray 2. We can 
now foresee a further thousandfold speed increase by the 
end of the 1990s due to additional increases in parallel 
efficiencies in excess of a factor of 100 and component 
speed and density improvements of roughly a factor of 10. 
It is now expected that teraflop speeds will be achieved by 
massively parallel supercomputers with a few thousand 
processors each achieving a maximum speed of approxi­
mately 1 gigaflop (109 flops). 

A medium-size scientific computation that now takes 
5 hours on a Cray YMP running at 200 megaflops and that 
would take over 28 years on a Macintosh at 0.004 
megaflops would require less than 4 seconds on the 
teraflop computer. Similarly, the solution of the grand 
challenge turbulence problems discussed here that should 
require 2 weeks per run on a teraflop computer would 
have required several centuries to run on the Cray YMP 
and millennia on the Macintosh. 

Nodes: Parallel computers 
An extensive body of literature on the design and 
application of parallel computer systems already exists10 

and emphasizes programming models and the parallel 
efficiencies attainable by them. Here we · also wish to 
emphasize other considerations that determine the effec­
tiveness of such systems for turbulence simulation. 

Prototype Parallel Computer can be used to 
model how memory size, processing speed 
and data transfer rates (JLPL, ILLs and J.Lso) 
must be matched for efficient para llel 
computation . A shared memory serves as the 
interconnect topology among the processing 
elements, and a fast disk serves as a large 
data bank. Figure 3 



We believe that one should approach the design of a 
computer system to solve physical problems much as one 
approaches the design of a laboratory to perform an 
experiment. One must take into account all resolution 
and computational requirements, including the balance 
among memory size, processing speed and the bandwidths 
of various components. However, it is nearly impossible 
to address these issues in a generic way because of the 
large variety of existing computer architectures. Here we 
will try to make some progress by first addressing the 
issues of programming model and parallel efficiency, and 
then, in order to address other issues, focusing on the 
"Prototype Parallel Computer," a system that has many 
components in common with existing and proposed 
parallel computers. 

A popular taxonomy for parallel computers, intro­
duced by Michael Flynn, divides the programming models 
into two classes: single instruction, multiple data stream 
(SIMD) and multiple instruction, multiple data stream 
(MIMD). In an SIMD computer, such as the Thinking 
Machines CM-2 or an NCUBE Inc computer, each processor 
performs the same arithmetic operation (or stays idle) 
during each computer clock cycle, as controlled by a 
central control unit. (See figure 2a.) Programs in this 
model, also referred to as data parallel programs,11 use 
high-level languages (for example, parallel extensions of 
FORTRAN and c), and computation and communication 
among processors is synchronized automatically at every 
clock period. 

On a multiple-instruction, multiple-data-stream com­
puter (see figure 2b) each of the parallel processing units 
executes operations independently of the others, subject to 
synchronization by the passing of messages among proces­
sors at specified time intervals. The parallel data distribu­
tion and the message-passing are both under user control. 
Examples of MIMD systems include the Intel Gamma, the 
Delta Touchstone computers and, with fewer but more 
powerful processors, the Cray C-90. (See the box on 
this page for a prescient 1922 description of an 
MIMD computer.) 

While it is often easier to design compilers and 
programs for SIMD multiprocessors because of the unifor­
mity among processors, such systems may be subject to 
great computational inefficiencies because of their inflexi­
bility at stages of a computation in which there are 
relatively few identical operations. There has been a 
natural evolution of multiprocessor systems toward the 
more flexible MIMD models, especially the merged­
programming model, in which there is a single program 
(perhaps executing distinct instructions) on each node. 
The merged-programming model is a hybrid between the 
data parallel model and the message-passing model and is 
exemplified in the newest Connection Machine, the CM-5. 
In this single-program, multiple-data model, data parallel 
programs can enable or disable the message-passing mode. 
Thus one can take advantage of the best features of 
both models. 

There is no universal yardstick with which to measure 
performance of computer systems, and the use of a single 
number, such as the peak performance quoted by the 
manufacturer, to characterize performance is often mis­
leading. So that different aspects of the computer system 
are measured, performance is commonly evaluated in 
terms of benchmark runs consisting of small code seg­
ments ("kernels") and prototype applications. This ap-

'A Myriad Computers at Work' 

In his landmark treatise Weather Prediction by Numerical 
Process (Cambridge University Press, 1922), the British 
meteorologist Lewis Fry Richardson demonstrated re­
markable prescience in his description of a futuristic 
multiple-instruction, multiple-data-stream parallel com­
puting facility for weather forecasting, albeit with human 
"computers": 

"Imagine a large hall like a theatre, except that the 
circles and galleries go right round through the space 
usually occupied by the stage. The walls of this chamber 
are painted to form a map of the globe .... A myriad 
computers are at work upon the weather of the part of the 
map where each sits, but each computer attends only to 
one equation or part of an equation. The work of each 
region is coordinated by an official of higher rank . . .. 
From the floor of the pit a tall pillar rises to h<tlf Lhe height 
of the hall. It carries a large pulpit on its top. In this sits 
the man in charge of the whole theatre; he is surrounded 
by several assistants and messengers. One of his duties is 
to maintain a uniform speed of progress in all parts of the 
globe. In this respect he is like the conductor of an 
orchestra in which the instruments are slide rules and 
calculating machines. But instead of waving a baton he 
turns a beam of rosy light upon any region that is running 
ahead of the rest, and a beam of blue light upon those 
who are behindhand." 

proach, however, is still dependent on the quality of 
software rather than just on hardware characteristics. 
The computer science community has recognized the 
controversy over performance evaluation methods and 
has made several recent attempts to provide more 
objective performance metrics for parallel computers. 

Gene Amdahl noticed long ago that the efficiency of a 
parallel computer system depends critically on the frac­
tion m of the total number of arithmetic operations that 
can be done in parallel. 12 Consider a computation that 
requires time Ton a single processor. If there are P such 
processors executing in parallel, the parallelizable opera­
tions require time mTI P, while the remaining fraction 
(1 - m) of computations done on a single processor 
requires time (1 - m)T. Thus the total time is reduced to 
[(1 - m) + ml P]T, giving a scalar performance measure 

5 = 1 
(1-m)+ miP 

(3) 

which is the effective number of processors used. For 
example, if m = 1, then 5 = P, implying that all the 
processors are used effectively; if m = 0, then 5 = 1. 
Equation 3, called Amdahl's law, shows that massively 
parallel computers with large P require massively paral­
lelizable computations. For example, if P is large and 
m = 1- l iP, then5is approximately Pl2: Only halfofthe 
computer is used effectively. The effective performance of 
the system can be measured by the parallel efficiency 
Ep = 51P, which is about ll(k + 1) when m = 1- kiP. 

The scalar performance measure 5 can sometimes be 
misleading, since it may favor inefficient but highly 
parallelizable algorithms over more efficient algorithms 
that may be more difficult to map onto a parallel 
multiprocessor computerY There are several industry­
standard benchmark programs such as Whetstone, Dhry­
stone and Linpack that are for nonparallel systems but 
have parallel extensions. While these benchmarks have 
been used extensively in all advanced computer system 

PHYSICS TODAY MARCH 1993 37 



evaluations, specific benchmarks have been developed for 
evaluating shared- and distributed-memory parallel com­
puters. These vary from simple parallel loops, which 
measure the abilities of parallelizing compilers, to the 
PERFECT benchmark, which consists of 13 programs 
(including several fluid dynamics programs), and MIMD 
benchmarks such as Genesis, which consists of programs 
for fast Fourier transforms, molecular dynamics, linear 
algebra and numerical solutions of elliptic partial differ­
ential equations. 

Measures of performance based on Amdahl's law are 
particularly effective for small programs that do not 
require extensive and intensive use of computer memory. 
Most programs used as computer benchmarks are of this 
sort, but they do not represent many of the requirements 
for the solution of grand challenge problems like turbu­
lence simulation. For example, we can now simulate a 
field of homogeneous turbulence at Reynolds numbers 
comparable to those of low-turbulence-level laboratory 
wind tunnels in one day on a 50-megaflop, 32-megaword 
desk-side superworkstation using 1283 modes. In 1970 
such a computation would have required many months on 
the CDC 7600 supercomputer even though the peak CPU 
speed of the CDC 7600 was also roughly 50 megaflops. 
This marked difference in throughput is due mainly to the 
limited memory size of the CDC 7600, which would have 
made necessary many slow data transfers to disk. 

We believe the issues of balancing memory, network 
speed and processing speed in computer design are best 
addressed by examining the Prototype Parallel Computer, 
depicted in figure 3, which we designed to solve a three­
dimensional fluid dynamics problem. The key compo­
nents of the PPC are an interconnecting set of P processing 
elements with distributed local memories, a shared global 
memory and a fast disk system. To avoid computational 
bottlenecks, data must be transferable among these 
components in roughly comparable times. We start by 
considering memory size, because we envision that grand 
challenge problems will have the computer fully dedicated 
to them for periods of 106 seconds or so (roughly two weeks) 
per run. This situation is quite different from that of 
running a shared resource at a computer center, in which 
many jobs contend for resources simultaneously. 

Let us assume that N 3 modes are used to resolve the 
flow field (N = 1024, for example, will be possible within 
the next two years). The total memory required (including 
all three velocity components, pressure and various 
history data) is then K 0 N 3 for some constant K 0 of order 
10, so we require the disk system to have memory size 
M 0 -;;.K0 N 3

. The shared memory is assumed to be large 
enough to hold several dozen two-dimensional planes of 
data, so that its size Ms >KsN2

, where Ks is at least 3-10 
times the number of planes of data stored in the shared 
memory. Finally, the local memories must be large 
enough to hold several "pencils" of one-dimensional data, 
so their size ML '$>KLN, where KL is 3-10 times the 
number of pencils stored in each local memory. (The 
values of these K factors depend on the number of 
variables needed at each mode for the most memory­
intensive steps of the computation and on the latency time 
of the storage device at the next higher level.) If we 
assume that the size of the shared memory is P times that 
of the local memories, that is, Ms zPML, then we can 
avoid discussions of the detailed architectural intercon­
nections among processors of the PPC. 

Next we assume that a total of yN3 computations are 
required per time step, where y is the number of 
operations per mode (or grid point) per time step. In fluid 
dynamics computations y is usually of order 250-5000, 
depending on the algorithm. Here y is a measure of the 
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computational complexity of the numerical method used 
to solve the flow equations (see the discussion in the next 
section). We assume that the code is highly parallelizable 
and does not suffer from inefficiencies due to paralleliza­
tion; that is, we assume Ep z 1. 

To proceed with the design of the PPC for our 
turbulence problem we first choose M 0 and Ms as 
described above. Next we choose the number of processors 
P so that the computations can be accomplished in 106 

seconds. That is, we choose P so that N, yN3<, 106PS, 
where N, is the number of time steps required and Sis the 
speed of each processor in flops. Typically N, z lOON. For 
example, in the immediate future we can envisageS= 100 
megaflops and N = 1024, so that more than 1000 proces­
sors will be required. 

Each time step of the computation takes yN3 /PS 
seconds, and in an efficient design all data transfers must 
also be completed in that time. If data are transferred 
between each processor and local memory at speed f.lPL 
words per .second, between each local memory and shared 
memory at a speed f.lLs, and between shared memory and 
fast disk at speed f.lsn; and if at each time step there are 
Qsn N 3 words transferred between disk and shared mem­
ory, and a total of QLs N 3 words transferred between all lo­
cal memories and shared memory, then we require 

N3 N3 N3 N3 
Qsn-z QLS--zr--::::r- (4) 

f.lsn Pf.lLS Puf.iPL PS 

where uz1-2 is the typical number of operations that a 
processing element performs on each word of data that is 
transferred to it from a local memory. Thus, with S = 100 
megaflops, p = 1000, y = 1000, QSD = 20 and QLS = 50 
(typical values for a spectral turbulence simulation), we 
must have f.lsn:::: 15 gigabytes/sec, f.lLs ;:;40 megabytes/sec 
and f.lPL ;:;800 megabytes/sec. If K 0 = 10 and N = 1024, 
then the disk size must be at least M 0 = 100 gigabytes, 
while Ms and PML may be an order of magnitude or more 
smaller. 

The principal conclusion from this analysis using the 
PPC model is that the solution of these large DNS 
problems requires a correspondingly large storage device 
(a fast disk in the case of the PPC) with a high transfer rate 
between the corresponding storage components. One 
must scale up the numbers given in this example to 
estimate performance requirements for an efficient and 
effective teraflop multiprocessor computer. 

Modes: Discrete approximations to flows 
Just as supercomputer architectures have undergone 
significant changes roughly every 20 years, so too have the 
numerical methods that solve incompressible- and com­
pressible-flow problems. Early work was based almost 
exclusively on finite-difference methods, which approxi­
mate derivatives by discrete differences. Then in the 
1960s, finite-element methods (based on variational for­
mulations in terms of piecewise polynomial representa­
tions of the solution) came to the fore. Spectral methods, 
discussed below, underwent significant development 
through the 1970s and '80s, and most current work on the 
direct numerical simulation of turbulence uses them. 
Today the emphasis is on combining the best features of all 
the previous methods to yield efficient and accurate 
hybrid flow solvers. 

We distinguish between methods that have been used 
primarily for simulations of incompressible turbulence 
and methods that have been used for simulations of 
compressible turbulence containing shock waves, which 
typically require special treatment. For incompressible 
flows we discuss spectral, spectral-element and particle 
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Andrei Kolmogorov's scaling law 
is verified by direct numerical 
simulations of turbulence using a 
5123 spectral code on the CM-200 
at Los Alamos. Isotropic energy 
spectra at various Taylor microscale 
Reynolds numbers R;. were rescaled 
by the maximum dissipation 
wavenumber kP and f (kP ) to give 
the plot shown here. The RJ. ::::: 150 
line was obtained using a different 
(time-independent) forcing term. 
The inset at the lower left expands 
the vertical scale of the area in the 
rectangle to show the close 
agreement of the data with the slope 
(k - 513

) predicted by Kolmogorov's 
law. (Courtesy of Zhen-Su She, 
University of Arizona; Shiyi Chen 
and Gary D. Doolen, Los Alamos 
National Laboratory; and Robert H. 
KraichnanJ Figure 4 
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methods, while for compressible flows we discuss hybrid 
finite-difference methods, including flux-corrected trans­
port and piecewise parabolic methods. All these methods 
have been used for direct numerical simulation and large­
eddy simulation of turbulence, 

Spectral methods. In spectral methods the Navier­
Stokes equations are solved using series expansions in 
terms of smooth functions such as complex exponentials 
and orthogonal polynomials. The first direct numerical 
simulation of homogeneous, isotropic turbulence3 used a 
Fourier series representation of solutions of the incom­
pressible Navier-Stokes equation in a periodic box with 
323 modes. Fast transform techniques were employed to 
move freely between Fourier and physical space represen­
tations of fields. The computational complexity of this 
spectral algorithm is relatively low; for N S. lOOO we obtain 
y:::::500, and more than 80% of the CPU time is spent on 
fast Fourier transforms. The key computational kernels 
(or code segments) are the fast Fourier transforms and the 
array transposes necessary to access different spatial 
directions. 

Let us illustrate these points by outlining how such a 
spectral computer code is designed to solve the time­
discretized Navier-Stokes equations, 

where ilt is the time step, vn is the velocity field at time 
step n, and wn = V X v n is the vorticity field. The time­
stepping scheme used in equation 5leads to errors of order 
(At)2• At the start of a time step we assume that vn and 
v n - 1 are stored on the disk of the PPC in terms of their 

complex Fourier coefficients v n (k,p,q) and vn - 1 (k,p,q), 
The momenta (k,p,q) are the (x,y,z) wavenumbers. The 
stages of the computation are given in the box on page 40. 
(See also figure 3.) 

By optimizing memory allocations in the algorithm 
shown in the box it is possible to achieve a parallel 
implementation with K :::::6 and Qsn = 18. Such a spectral 
code with N = 512 currently runs at 20 seconds per time 
step in 32-bit precision on a 512-processor Intel Delta 
computer14 (30 times faster than on a single-processor 
Cray YMP) and at 30 seconds per time step on a 64-
kilobyte CM-200.15 These speeds, however, are less than 
one-third of the code's theoretical peak speeds on these 
computers because of interprocessor communication and 
memory access delays, so that these machine resources are 
not quite balanced according to the criteria developed for 
the PPC. 

Similar spectral codes are now routinely used4 to 
study boundary-layer flows and flows in channels using 
Fourier representations parallel to the boundary but 
using Chebyshev or Jacobi polynomials in the inhomoge­
neous directions, For these problems the required compu­
tational kernels include fast Fourier transforms, direct 
matrix-vector multiplications, and inversions of tridiago­
nal matrices (matrices whose only nonzero elements are 
on the diagonal and adjacent to it). The corresponding 
complexity measure is y:::::800. 

In the past decade spectral methods have been 
extended to problems in complex geometries, such as flow 
past a sphere. (See the cover of this issue.) 

Spectral-element methods16 combine some of the 
best features of spectral methods with those of finite­
element methods by decomposing the domain into subdo­
mains within which the variables and geometry are 
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represented as high-order tensor products of spectral 
polynomials. In this approach there is only a weak 
coupling between the dependent variables of adjacent 
subdomains, resulting in relatively sparse matrices that 
must be solved. The latter feature is critical to keeping 
the memory requirements and the processing time, and 
hence the computational complexity, of the method within 
reasonable bounds. In addition, the intrinsic coarse 
granularity (the "domain decomposition") of spectral­
element methods leads naturally to a geometry-based 
distribution of work among processors that allows a high 
degree of parallelism.17 The key computational kernels 
are scalar products, matrix-vector multiplications and 
matrix-matrix multiplications. The corresponding value 
for r is approximately 2500. 

Particle methods have been used for simulating a 
variety of incompressible and compressible flows and for 
plasma simulations (see the article by John M. Dawson, 
Victor Decyk, Richard Sydora and Paulett Liewer on page 
64). For incompressible flows two types of particle 
methods are popular: vortex methods and lattice gases. 
Random vortex methods have been used to simulate high­
Reynolds-number, mostly incompressible, turbulent flows, 
including shear flows of chemically reacting species.18 In 
methods of this sort vorticity is approximated by a 
collection of particles (or "vortex blobs") that carry 
discrete quantities of vorticity. The corresponding veloc­
ity field is obtained from the vorticity field by the 
Biot-Savart law (by analogy with the deduction of a 
magnetic field from underlying current loops). The 
computational kernels involve the solution of N-body 
problems for the interior of the domain and on the 
boundary of the flow, and the solution of a potential-flow 
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Steps in Typical Parallel Spectral Program 

1. Import x-y planes of vn from disk storage (DSJ to 
shared memory (SM). 

2. Import x-pencils from SM to local memory (LM) and 
compute x-fast Fourier transform (FFT) of v n and wn. 
Result: vn (x,p,q), wn (x,p,q). 

3. Export results of step 2 from LM to SM. 
4. Import y-penci ls from SM to LM and compute y-FFT. 

Result: vn (x,y,q), wn (x,y,q). 
5. Export results of step 4 from LM to SM to DS. 
6. Import x-z planes from DS to SM. 
7. Import z-pencils from SM to LM and compute 

z-FFT. Result: v n (x,y,z), wn (x,y,z) . Then compute 
r = v n X wn in physical space and perform if) verse z­
FFT of r. Result: r(x,y,q). 

8. Export r from LM to SM to DS. 
9. Import x-y planes of r(x,y,q) and v n - 1 (x,y,z) from 

DS to SM. 
1 0. Import x-pencils of r(x,y,q) from SM to LM and 

compute inverse x-FFT. Result: r(k,y,q). 
11. Export results of step 10 from LM to SM. 
12. Import y-pencils of r(k,y,q) from SM to LM and 

compute inverse y-FFT of r. Result: r(k,p,q). 
13. Solve for II algebraically to impose incompressibil­

ity: Il(k,p,q) = - i(kr1 + pr2 + qr3)f(k2 + p2 + q2). 
(This equation is derived by applying equation 6 to 
equation 5 and Fourier-transforming.) 

14. Import vn - 1 (k,p,q) from SM to LM and evaluate 
v n + 1 (k,p,q) using the Fourier transform of equation 
5. Result: v n + 1 (k,p,q). 

15. Export vn + 1 from LM to SM to DS, completing the 
time-step cycle. 
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problem to guarantee that the induced vorticity does not 
cause flow across the boundary. In addition, · viscous 
effects require the dynamic generation of vortex elements 
at the boundary to impose the condition that fluid does not 
slip along the wall at the boundary. 

Lattice methods, including lattice gases and lattice 
versions of the Boltzmann and Bhatnagar-Gross-Krook 
(BGK) kinetic equations,I9 are intrinsically parallelizable 
due to local interactions and communications. They 
involve a novel statistical mechanics of discrete particles 
with discrete velocities whose average coarse-grained 
behavior follows the Navier-Stokes equations. These 
methods are particularly effective in treating highly 
complex flows, such as porous media flows, multi­
phase flows and flows over rough boundaries. Recently 
there has been interest in the possibility of extending 
these techniques to perform large-eddy simulation of 
turbulence. 

Finally, it is possible to combine the application of 
these lattice or other low-order finite-difference descrip­
tions in local regions with high-order spectral-element 
descriptions applied in the remainder of the region. 16 

Hybrid difference methods. Flux-corrected trans­
port methods were originally developed to treat problems 
involving strong shocks, blast waves and chemically 
reactive flows . More recently they have been used in 
simulating compressible turbulent flows. They enforce 
the physical principles of positivity and causality on the 
numerical solution of problems involving sharp disconti­
nuities.20 These methods modify relatively conventional 
difference methods for incorporating hyperbolic conserva­
tion laws by using solution-dependent flux limiters that 
prevent the appearance of artificial extrema and hence 
artificial oscillations in the solution. Three-dimensional 
compressible codes are developed using one-dimensional 
subroutines; this is justified mathematically by factoring 
evolution operators ("directional splitting"). A three­
dimensional computation requires roughly 30 calls to one­
dimensional subroutines. The computational complexity 
is y::::;2500. 

The piecewise parabolic method21 is a hybrid scheme 
that combines classical difference methods and high-order 
interpolation techniques constrained so that sharp flow 
features are resolved using only about two computational 
cells. In this method there is no explicit incorporation of 
viscous dissipation; instead dissipation is introduced at 
high wavenumbers by discretization errors that arise in 
approximating the inviscid Euler equations.21 The 
scheme also uses directional splitting. Subdomains, typi­
cally three-dimensional bricks that constitute a part of a 
three-dimensional uniform grid, are assigned to individual 
nodes. The computational and data-communication com­
plexity of the piecewise parabolic method is due to local fi­
nite-difference arithmetic and transfer of the five primi­
tive variables residing along edges of the subdomains. The 
computational complexity is y::::;2500. 

Flow codes: Parallel simulations of turbulence 
We now briefly describe four applications of parallel 
computers to turbulent flow problems; the first two 
involve incompressible flows, while the latter two involve 
compressible supersonic flows. 

Homogeneous turbulence. A 5123 spectral simula­
tion15 has been performed on the 64K CM-200 SIMD 
parallel computer to verify Kolmogorov's theory of small 
eddies. (See the article by Frisch and Orszag.) With this 
high resolution it was possible to simulate homogeneous 
turbulence with confidence up to Taylor microscale 
Reynolds numbers R ;._ ::::;200. In figure 4 we give a log-log 
plot of the energy spectra, rescaled by a characteristic 
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Decaying supersonic turbulence simulated using a three-dimensional piecewise parabolic method on the 
CM-5. Colors indicate normalized pressure, with values increasing from red to yellow to green to blue; 7 is the 
time it takes a sound wave to propagate across the periodic computational box. The volume rendering is based 
on an opacity proportional to the negative velocity divergence, so that regions near shock waves are most 
opaque. (Courtesy of David H. Porter and Paul R. Woodward, University of Minnesota; and Annick Pouquet, 
Observatoire de Ia Cote d' Azur.) Figure 5 

dissipation wavenumber kP, for several Reynolds numbers 
R;_. The results plotted in this figure show that Kolmogor­
ov's universal scaling theory collapses all the data to a 
single curve and thereby gives an accurate description of 
turbulence energetics. 

Drag reduction by riblets. One of the more 
interesting methods for reducing boundary-layer drag 
uses "riblets"-microgrooves aligned with the mean flow 
direction. The skins of some species of fast-swimming 
sharks have riblets. Riblets were successfully employed in 
the 1987 America's Cup competition and have already 
been tested at flight conditions. It has been found that 
rib lets can reduce drag by 4-12% for flow over a flat plate. 
However, no clear explanation of the mechanism of 
turbulent drag reduction by riblets has yet been con­
firmed. To advance the understanding and expedite the 
design, placement and shape of riblets, direct numerical 
simulation of flows with riblets have been performed using 
a hybrid spectral-element-Fourier spectral method on the 
Intel Gamma and Delta Touchstone parallel computers.22 

With 512 processors, speeds in excess of 3 gigaflops are 
obtained (3 seconds per time step for 100 elements of 
resolution 10 X 10 X 256). Figure 1 shows the instanta­
neous stream wise velocity component of the three-dimen­
sional flow field at three different cross-flow planes. The 
simultaneous visualization of flow structures on the upper 
(smooth) wall and the lower (riblet) wall leads to quantita­
tive predictions and to a qualitative model of the 
turbulence production and associated shear stress. 

Supersonic, compressible homogeneous turbu­
lence. High-resolution (up to 5123

) simulations of super­
sonic homogeneous turbulence have been carried out on 
the parallel CM-5 computer using the piecewise parabolic 
method21 and on the Intel Touchstone prototype using a 
sixth-order finite-difference method.23 For the CM-5 code 
the data are partitioned into 512 blocks mapped onto 512 
nodes; the code runs at approximately 1.5 gigaflops using 
only the scalar CM-5 chips. Figure 5 shows a perspective 
volume rendering of the pressure field of a turbulence 
decay run. The simulation begins with a field of homoge­
neous turbulence with rms Mach number 1.1; the goal is to 
see how shock waves develop as the turbulence dissipates. 
The figure shows the pressure at times 0.37, 1.07 and 2.07, 
where 7 is the time that it takes a sound wave to propagate 
across the computational box. Apparently the number of 

shocks increases and the typical shock strength decreases 
with time, although there are still some fairly large 
pressure jumps even at later times. Such simulations 
show tl:lat in a supersonic flow vorticity is produced by 
shock curvature and shock intersections rather than by 
the random vortex stretching mechanism that is dominant 
in subsonic and incompressible flows. 

Supersonic reacting shear layer. Parallel flux­
corrected transport computations of supersonic, multispe­
cies, chemically reacting, exothermic turbulent flows have 
run at 800 megaflops on the CM-200 with 16K processors 
and have been used to evaluate new concepts for high­
speed propulsion.24 Figure 6 shows the hydrogen mole 
fraction at an advanced stage in the mixing of two 
counterflowing supersonic streams of hydrogen and air in 
a small (1 em X 1 em) region. Such conditions might be 
found in the engine of the proposed National Aerospace 
Plane. Because the computations involve nine species 
undergoing physicochemical processes (including convec­
tion, thermal conduction and chemical reactions), they tax 
the capabilities of the most powerful parallel computers. 

Perspective 
Experience has shown that each time a new supercom­
puter is introduced, it takes several years for software to 
mature on the new architecture, and usually by the time 
the software has matured, new versions of the computer 
system are available. Nevertheless, it has been possible to 
make effective use of the new architectures at an early 
date for computational fluid dynamics (CFD), even with­
out effective, general purpose software. In fact, it is in the 
early years of new architectures that many of the most 
important scientific discoveries occur. To achieve such 
results, one must understand the basic computer architec­
ture and its optimal use, which may require using low­
level (even assembly) languages. The knowledge gained in 
these leading-edge CFD applications has been of direct 
benefit to developers of compilers and higher-level lan­
guages. Effective collaborations between CFD scientists 
and computer hardware and software experts will be 
critical to the development of the new teraflop computer 
environments. 

Electronic component speeds and densities have 
improved by a factor of more than 105 in the last half-cen­
tury. This development is unrivaled in other fields of 
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human endeavor; if automobiles had undergone similar 
improvements, today a Cadillac would sell for less than a 
penny, or it would be capable of a peak speed in excess of 
1% of the speed of light, or one gallon of gas would suffice 
for about ten trips to the Moon. Despite these remarkable 
advances in computer electronics, the motivating force 
behind computer developments has been (and will likely 
continue to be) the grand challenge applications. Indeed, 
it was the application of numerical weather forecasting 
that inspired the British meteorologist Lewis Fry Richard­
son in 1922 to foresee the use ofMIMD parallel computers. 
(See the box on page 37.) 

In the same way, the foresight of CFD scientists 
following in Richardson's tradition will likely drive many 
of the most significant future computer developments. We 
expect that continued development of hybrid numerical 
methods, in conjunction with the development of physical 
models (based on fundamental theory and integrated with 
the results of prototype experiments) and the considera­
tion of computer architectures like the Prototype Parallel 
Computer, will form the basis for breakthroughs on the 
grand challenges in fluid mechanics. 

We would like to acknowledge our colleagues, too numerous to 
mention here, who have provided us with up-to-date information 
in this rapidly developing field. 
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