THE PROTEIN FOLDING PROBLEM

Understanding and predicting the three-dimensional structures
of proteins from their sequences of amino acids requires

both basic knowledge of molecular forces and sophisticated
computer programs that search for the correct configurations.

Hue Sun Chan and Ken A. Dill

Thousands of different types of proteins occur in biological
organisms. They are responsible for catalyzing and
regulating biochemical reactions, transporting molecules,
the chemistry of vision and of the photosynthetic conver-
sion of light to growth, and they form the basis of
structures such as skin, hair and tendon. Protein mole-
cules have remarkable structures. A protein is a linear
chain of a particular sequence of monomer units. A major
class of proteins, globular proteins, ball up into compact
configurations that can have much internal symmetry.
(See figure 1.) Each globular protein has a unique folded
state, determined by its sequence of monomers.

The protein folding problem is to predict the compact
three-dimensional structure from knowledge of the mono-
mer sequence. It is one of the fundamental problems in
biophysical science. Understanding the physics of protein
conformations will be of great importance for biomedicine:
in designing novel proteins, in decoding the genetic
information obtained by the Human Genome Project, in
designing new drugs and in trying to understand the
structures and functions of the thousands of protein
sequences that are being discovered every day in biotech-
nology labs.

What are proteins?

A protein is a linear polymer molecule, a chain of tens to
thousands of monomer units strung together like beads in
anecklace. The monomers are the 20 naturally occurring
amino acids. Different proteins have different sequences
of the amino acid monomers, and the amino acid sequence
is known as the primary structure of a protein. Proteins
may be classified into three types: fibrous, membrane and
globular. Fibrous proteins such as collagen, which con-
tributes to tendon and bone, and a-keratin, which makes
up hair, skin and feathers, serve mainly structural roles.
Membrane proteins reside in cellular membranes, where
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they mediate the exchange of molecules and information
across cellular boundaries.

The main focus of this article is globular proteins.
Enzymes, which are the catalysts for virtually all bio-
chemical reactions in living cells, are globular proteins. A
typical cell contains 1000 to 4000 different enzymes.
Although they are chain molecules, globular proteins have
structures and properties quite different from those of
other polymeric states of matter. Because the energy
differences caused by internal bond rotations are small,
polymers usually have many different conformations.
(See figure 2.) Most synthetic polymeric materials are
liquids, glasses, elastomers (such as rubber) or composite
solutions, in which individual molecules have diverse
conformations, most of which are open and interpenetrat-
ed by other molecules. In contrast, the most important
state of a globular protein, known as its native or folded
state, is extremely compact and is unique. That is, a given
protein folds to only one native state (although the native
states of different proteins can be quite similar). The so-
called secondary structure of a globular protein includes
hydrogen-bonded a-helices and S-sheets (the latter formed
of two or more adjacent strands running parallel or
antiparallel). (See figure 3.) The large-scale architecture
of a protein—how the helices, sheets and other secondary
structures fit together—is called its tertiary structure.
Proteins are in their native states in aqueous solvents near
neutral pH at 20-40°C; this is the typical cellular
environment. Under some nonphysiological conditions,
such as high temperature, acidic or basic pH, or in some
nonaqueous solvents, the unique folded structure of a
protein unfolds or denatures, often reversibly, through a
sharp transition to an ensemble of more expanded
conformations.

The folding equilibrium is shown schematically in
figure 1. Under physiological conditions the native state is
marginally more stable (typically by about 40 kdJ per mole
of protein) than the ensemble of denatured conformations.
Marginal stability may be necessary for biological func-
tion, since catalysis and binding properties of proteins
must be responsive to the environment and to regulatory
molecules. For example, hormones and biological signal-
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Folding of a globular protein from its denatured state (left) to its unique, compact native state (right) is
encoded in its sequence of amino acid monomers. A complete understanding of this “’second genetic code”’

continues to elude researchers. Figure 1

ing molecules cause conformational changes when they
bind to their target proteins, and the ability to chemically
degrade proteins is essential for the regulation of protein
concentrations in the cell. Nevertheless marginal stabil-
ity poses the problem for researchers of understanding the
small net effect of large and diverse driving forces. Among
the 20 amino acids, some have net charge, all can form hy-
drogen bonds, and about half of them are nonpolar to
varying degrees. A large contribution to the balance of
forces also comes from the decrease in conformational
entropy upon folding.

The native state of a typical globular protein has
several remarkable properties:
D> Itis as tightly packed as a small-molecule crystal, but it
is usually devoid of the simple spatial regularity of a
crystal.
> Amino acids are of different types, often classified as
hydrophobic monomers (denoted by H), which are oil-like
and interact unfavorably with water, and polar or charged
monomers (denoted by P), which interact favorably with
water. An example of an H monomer is the amino acid
leucine; an example of a P monomer is serine. In native
conformations of globular proteins, the H monomers tend
to be buried inside the core of the globule, implying that
proteins are driven to compactness by the force that causes
oil and water to separate (the hydrophobic interactions,
which we will discuss further below). P monomers tend to
reside on the surface of the globule, although exceptions
are common.
> Some proteins have beautiful symmetries in their
secondary and tertiary structures, but other globular
proteins have little internal symmetry. Proteins come in
families of structures,’ such as bundles of helices, or
barrels or sandwiches of S-sheets.
> Each amino acid sequence folds into a unique native
structure. DNA molecules in the genes encode the amino
acid sequences. Most natural sequences are not simple
periodic repeats of monomers.
> Under folding conditions, the native state is often
thermodynamically stable (apart. from small-amplitude
fluctuations in the atomic positions, which can show
glassy dynamics). In contrast, many synthetic polymeric

materials are glassy and metastable, and their structures
are dependent on their preparation history.

This set of properties has not been found in nonbiolog-
ical polymers.

The second genetic code

The balance of forces that folds a protein into its unique,
compact native structure is encoded within its amino acid
sequence. This correspondence between sequence and
structure is sometimes referred to as the “second genetic
code.” (The first genetic code is the correspondence
between the base sequence of a DNA molecule and the
amino acid sequence of the protein whose synthesis it
controls.)

Why is solving the folding problem—understanding
and predicting the native conformation of a protein from
its amino acid sequence—important? First, because we
wish to know how such remarkable states of matter arise
from the underlying laws of chemistry and physics. To
understand how a protein functions, we must know its
three-dimensional structure. Learning the structures of
proteins is a long process: About 400 protein structures
are now known at atomic resolution from x-ray crystallog-
raphy and from multidimensional nuclear magnetic
resonance experiments. Learning amino acid sequences,
however, is much simpler, and the database of sequences is
already vast: About 40 000 sequences are known, and the
number of new sequences is approximately doubling every
year. The Human Genome Project promises to increase
this rate. To predict the biological function of all these
sequenced proteins requires either the experimental
determination of thousands of structures or the solution of
the folding problem.

Second, solving the folding problem would unleash
considerable new power in biotechnology, in principle
permitting the ab initio design of new proteins. Applica-
tions include new biological and chemical catalysts;
biosensors; pharmaceuticals; hormones and biological
regulatory agents; the conversion of optical to chemical
energy, as in photosynthesis, or chemical energy to
motion, as in muscles and other protein motor machinery;
and the storage of energy or information on the size scale
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of angstroms. The solution would let us predict which
sequences are likely to be useful for these purposes and
which are not. The problem of protein design is called the
inverse folding problem: A protein folding algorithm
would take an amino acid sequence as its input and would
output a predicted native structure; an inverse folding
algorithm would use as input a desired native structure
and output a list of sequences that fold into it. The folding
and inverse folding problems are different formulations of
the same problem, and both call for an understanding of
the relationships between amino acid sequences and
native structures.

We can learn about the relationship between se-
quence and structure by observing patterns in the
database of known protein structures. Lists have been
compiled of the propensities of the various amino acids to
be in helices, sheets or turns in the native conformations of
proteins. Similar taxonomic lists now exist for pairs and
triplets of amino acids, longer sequence fragments, short
pieces of chains in loops and so on. Such lists form the ba-
sis of a strategy: Predict the likely secondary structure
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patterns from the sequence and then attempt to assemble
the predicted secondary structures into tertiary structures
in ways that are consistent with high packing density, a
nonpolar core and other constraints.? Neural nets, which
are highly suited to performing pattern recognition, have
also been used to learn about the relationship of sequence
to secondary structure.®

Taxonomic methods accurately predict the conforma-
tions of about 60-70% of amino acids in proteins. Higher
success rates can be achieved when there is additional
knowledge, such as when it is known a priori to which
family the protein of interest belongs. A limitation of
these methods has been that they capture only the local in-
teractions, that is, the interactions among monomers that
are near neighbors in the sequence (see figure 4), and
neglect nonlocal factors, including hydrophobic interac-
tions, that involve monomers that are far apart in the
sequence. Peter G. Wolynes and his colleagues are
developing a method that uses a neural-net-like procedure
to “learn” the coefficients of both local and nonlocal
energy terms in a semiempirical Hamiltonian function.
Another approach to including the nonlocal interactions is
that of Henrik Bohr and coworkers, in which neural nets
“learn” distance matrices, that is, the spatial separations
of pairs of amino acids in proteins.?

Physical driving forces

Ultimately we would like to go beyond such heuristic
approaches and understand how to fold a protein based on
the physical driving forces. To find the stable native state
of a protein, ideally we should compute, for every possible
conformation of the chain, the sum of the free energies of
the atomic interactions within the protein and with the
solvent and then find the conformation with the lowest
free energy. But this is not feasible, because the number of
conformations N of a chain molecule grows exponentially
with the chain length: N~u”, where n is the number of
monomers and u ~2-6 is the number of rotational isomers,
determined by the types of monomers that make up the
polymer. (See figure 2.) An exhaustive search is not a
practical solution to the folding problem for a computer
algorithm. Nor is it practical for a real protein: This is
the Levinthal paradox, named after Cyrus Levinthal,* who
first raised the question, How does a protein find the
global optimum (its native state) without a global search?
Proteins fold much faster—by tens of orders of magni-
tude—than the time a chain molecule would need to
undertake a global search. What vast parts of conforma-
tional space does the protein avoid?

Proteins are not the only physical systems that find
thermodynamically stable states in the face of large
numbers of degrees of freedom. Physical systems settle
into equilibrium states by processes that are seldom
random or exhaustive; rather they are directed by
energies. The free energy as a function of the degrees of
freedom is the energy landscape, or conformational space.

Different interatomic bond conformations
(generated by the indicated rotations) have
only small energy differences, allowing many
overall conformations of a polymer chain to
arise. Figure 2



Structures of globular proteins include ordered assemblies of helices (left) and sheets (middle) and mixtures of
helices and sheets (right). Other proteins have less regularity. (From C. Branden, ). Tooze, /ntroduction to

Protein Structure, Garland, New York, 1991.)

One way to explore such landscapes is by molecular
dynamics techniques, in which a computer numerically
solves Newton’s laws of motion using interaction energies
obtained from experiments on smaller molecules.

These force-field simulations® have contributed much
to our understanding of proteins and polymers, but to find
the global minimum for a protein is to search for a needle
in a very large haystack. Even a small protein contains
tens of thousands of atoms, and to treat all the major
forces properly the simulation must include the surround-
ing water molecules,  adding thousands of additional
atoms. Moreover, because the harmonic motions of
bonded atoms have characteristic times of around 10~ 14—
1073 seconds, stable numerical integration requires
femtosecond (107 '° second) time steps. Supercomputers
can currently simulate up to nanoseconds of real-time
protein dynamics with such short time steps, but this scale
doesn’t approach the 10~'-10° seconds typically required
to fold real proteins. Even though parallel processing
supercomputer power is increasing about a thousandfold
every 10 years, it could be 10-30 years before brute-force
molecular dynamics reliably folds proteins. (See figure 5.)
Success in folding proteins by molecular dynamics will
also require improvements in the accuracy of the simulat-
ed force fields.

The shape of the energy landscape is determined by
the forces of folding. Alfred Mirsky and Linus Pauling
proposed in 1936 that hydrogen bonding is the dominant
force of folding.® Pauling, R.B. Corey and Herman R.
Branson built models of chains of amino acids to deter-
mine the peptide bond geometry.” By finding conforma-
tions that make good hydrogen bonds, they discovered a-
helices and f-sheets, and predicted they would be impor-
tant components of proteins. As figure 3 illustrates, their
prediction was correct.

But in the 1950s, Walter Kauzmann pointed out that
hydrogen bonding would not strongly favor the folded
state relative to unfolded states, because unfolded confor-
mations can form hydrogen bonds with water that should
be just as strong as the intrachain hydrogen bonds in the
folded state.® He felt that hydrophobic interactions were a
stronger force for folding proteins. Despite many theoreti-
cal and experimental studies since Kauzmann’s work,

Figure 3

however, the molecular details of hydrophobic interac-
tions are not yet clearly understood. In thermodynamic
terms, we know that the mixing of nonpolar, oil-like
molecules with water has a large positive free energy, is
disfavored by entropy near room temperature and leads to
a large increase in heat capacity. The most common
interpretations of these effects involve orientational
ordering of water molecules upon the dissolving of a
nonpolar substance.

In the 20 years following Kauzmann’s observation,
the view emerged that hydrophobic interactions nonspe-
cifically favor compactness and that hydrogen bonds and
local interactions determine the detailed internal archi-
tecture and sequence-dependent uniqueness of a native
conformation. A different view has recently entered into
protein folding research—that hydrophobicity and nonlo-
cal interactions are a major factor in causing not only the
compactness but also the uniqueness and internal archi-
tectures of globular proteins. (References 9 and 10 review
this viewpoint.)

Homopolymer collapse theories

What drives a polymer to become compact? A polymer
chain composed of oil-like monomers will ball up in water
to minimize the area of unfavorable monomer-water
contacts. But since there are far fewer compact than
expanded conformations of chain molecules, the greater
conformational entropy in the expanded state will oppose
collapse. The balance of these forces will determine the
average chain compactness.

These ideas, rooted in the work of Paul J. Flory in
1949, led to the first theory of the collapse of homopoly-
mers (polymers composed of a single species of monomer),
developed by Oleg B. Ptitsyn and Yuili Eizner in 1965, and
to subsequent mean-field models.'®!' According to these
models, changing the strength of the monomer-monomer
attraction leads to a sharp collapse from open to compact
conformations. In this approach, the chain is assumed to
follow a three-dimensional random walk, and three terms
contribute to the free energy as a function of the chain
compactness. The first two come from the entropy, which
is assumed to be factorable into two parts: “elasticity,”
which originates from the reduction of entropy on
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stretching (or compaction)—the same as the retractive
force of rubber—and an “excluded-volume correction” to
account approximately for the impossibility of chain self-
intersections, which is neglected in the elasticity factor.
Excluded volume is accounted for in the Flory approxima-
tion based on the following estimate: If there are m
monomer-sized volume elements, and a chain has n
monomers, then for a fraction m!/[m"(m — n)!] of all
random walks the chain will not violate physical reality by
crossing through itself.!® The third contribution to the
free energy is the energetics of monomer-monomer and
monomer-solvent contacts. It is approximated using the
Bragg-Williams mean-field approximation, which as-
sumes a random sea of monomers in which the number of
contacts among monomers is proportional to the square of
the monomer density.

What is the shape of the free energy landscape for
polymer collapse? In a first-order transition, the free
energies of native and denatured states would be minima
separated by a free-energy barrier. In a higher-order
transition, there would be no barrier. Some mean-field
models predict a first-order transition, but it is possible
that the free energy barrier in those models is an artifact
of their approximations.

There have been several improvements in collapse
theories. Sam F. Edwards introduced a self-consistent
field approach in 1965 to model self-avoiding chains more
accurately. Here the excluded-volume repulsion between
individual monomers is approximated as a field that is
self-consistently determined as a function of the monomer
density. In 1968 Ilya M. Lifshitz proposed a general self-
consistent field formalism for the study of polymer
collapse; it has been further developed by his coworkers
Alexander Yu. Grosberg and Alexey R. Khokhlov. In a
first approximation similar to the approach of Flory, they
found a second-order transition for the collapse of infinite-
ly long homopolymer chains. More recently, by allowing
for a nonuniform spatial density distribution of monomers
and by treating the entropic restrictions on chain turns at
globule surfaces, Grosberg and Dmitry V. Kuznetsov
found that coil-globule transitions for finite-length homo-
polymers are considerably sharper—more like first-order
transitions. A principal difficulty in devising refined
theories is the many-body nature of the chain self-
collisions in compact conformations.'?

Models of heteropolymer collapse

Theories of the collapse of heteropolymers (polymers made
of more than one monomer type), such as proteins, are in a

Interactions in polymers may be
divided into local (those among near
neighbors in the sequence) and nonlocal
(those among monomers that are far
apart in the sequence). The importance
of both types of interaction contributes
to the difficulty of modeling

folding. Figure 4
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) Local interaction

more primitive state than theories of homopolymers.'°
Heteropolymer collapse differs in important ways. For
example, heteropolymers can organize into a core and
surface of two different monomer types, while a homopoly-
mer does not have this degree of freedom. It remains a
challenge to learn how heteropolymers can collapse to
unique states and how heteropolymer sequences produce
the thousands of unique structures that are native
proteins. '

One heteropolymer collapse model is based on the
Flory and Bragg—Williams mean-field approximations
described above.'® It treats the thermodynamic properties
of collapse—how collapse depends on temperature, the
composition and length of the chain, the solvent, and
effects of pH and salt concentration—but not the kinetic
aspects of folding. Consistent with experiments, it pre-
dicts that there should be three stable states under
different conditions: native, compact denatured and high-
ly unfolded.

Another approach is based on spin glass models.*
The concept of spin glass was first proposed by Edwards
and Philip W. Anderson in 1975 to account for the
madgnetic properties of dilute alloys of manganese in
copper. (See the Reference Frame columns by Anderson
in PHYSICS TODAY, January, March, June and September
1988, July and September 1989, and March 1990.)
Applications of spin glass methods to proteins do not try to
model the folding of a specific amino acid sequence to a
specific structure. .Rather they consider statistical ensem-
bles of amino acid sequences, modeled by assigning
random interaction energies between monomers on a
chain. By averaging over the ensemble these methods
seek to learn about the folding process itself.

Joe D. Bryngelson and Wolynes were the first to apply
spin glass concepts to the coil-to-globule folding of
proteins, in 1987. In their model, interactions between
monomers are assumed to be randomly distributed, as in
Bernard Derrida’s 1981 random-energy model. They
predict different folding and “freezing” transitions of a
heteropolymer: A chain may fold into a given native
structure specified in advance or freeze into a collection of
“misfolded” (non-native) structures that have extremely
slow dynamics of interconversion. Other model studies
have also found that the kinetic accessibility of the native
structure is strongly sequence dependent.!®

Other spin glass models'* include one introduced in
1988 by Thomas Garel and Henri Orland. In their
heteropolymer model of freely jointed chains, the pair
interaction B;; between monomers i and j is a random
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variable. Then the spin glass procedure of averaging
over different “replicas” is carried out. (See Anderson’s
June 1988 column.) B;; is a parameter that represents
the heterogeneity of interactions. Eugene I. Shakhno-
vich and Alexander M. Gutin developed a heteropolymer
model in which the distribution of monomer-pair interac-
tion strengths B,; was assumed to be Gaussian and
which included a three-monomer hard-core repulsion
term. In their theory the width B of the heterogeneity
distribution B;; plays the crucial role of determining the
number of lowest-energy states of the model. If the
sequences are sufficiently heterogeneous (B large),
Shakhnovich and Gutin find that only a few states
dominate in the low-temperature phase. Thus they
conclude that unique protein folds can arise simply from
sequence heterogeneity.

Collapse theories show that heteropolymers can
undergo sharp transitions that resemble protein folding,
from open ensembles to compact conformations with
solvent-averse (H) monomers sequestered into a core.
Moreover, from the spin glass mode!s described above and
exact models described in the next section, it is clear that
heteropolymers can collapse to only a very small number
of compact conformations. This contrasts sharply with
the situation for homopolymers, which collapse to large
ensembles of compact conformations, and it suggests that
the uniqueness of protein native states may be largely
encoded in the nonlocal interactions (mainly the pattern
of hydrophobic monomers in the sequence) rather than in
the local interactions. The limitation of existing hetero-
polymer collapse theories is that they consider only the
composition (the number of monomers of each type) of a
sequence and, in some of the spin glass models, the

Figure 5

distribution of interaction energies, but otherwise they
assume the sequences are random.

Simplified exact models

Exploring the relationships of amino acid sequences to
native structures requires models different from existing
collapse theories, which average out the effects of the
sequence, and atomic-resolution molecular dynamics sim-
ulations, which are limited by computational restrictions.
To explore sequence-structure relationships, a class of
model has emerged in which proteins are represented as
self-avoiding walks on lattices. Specific sequences of
monomers are studied in chains short enough that the full
conformational space can be enumerated exhaustively.

The first exact enumeration of short chains on
lattices was the work of W. J. C. Orr in 1947. Orr
enumerated all the self-avoiding conformations on lattices
for chains less than 10 monomers long. With improve-
ments in computer technology, Cyril Domb, M. F. Sykes
and their coworkers explored longer chains,'® providing
the underpinnings for many of the modern developments
in polymer theory, including scaling laws and renormal-
ization-group methods.

Similar in spirit is the HP lattice model for proteins,'”
shown in figure 6. Chains are configured as self-avoiding
walks on two-dimensional square lattices or three-dimen-
sional simple cubic lattices. Based on the assumption that
the hydrophobic interaction is the dominant force in
protein folding,’ a protein is modeled as a specific sequence
of hydrophobic (H) and hydrophilic (P) monomers (for
example, PHHPHP . ..). Each interaction between two H
monomers that are adjacent in space but not covalently
linked is favored by a contact energy € <0, and all other in-
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HP lattice model represents a
protein as a sequence of
hydrophobic (H, red) and
polar (P, blue) monomers on a
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No H-H contacts

teraction energies are zero. For short chains, all the
conformations can be enumerated and their energies
evaluated to find the global energetic minimum for each
HP sequence. The properties of this model are now known
in some detail for the two-dimensional square lattice. For
the chain lengths for which exhaustive enumeration is
possible (up to about 30 monomers), two-dimensional
models more accurately represent the physically impor-
tant surface—interior ratios of proteins than do three-
dimensional models. To achieve the correct surface—
interior ratio to represent a protein molecule the size of
myoglobin requires a chain of 154 monomers in three
dimensions, but only about 16-20 monomers in two
dimensions.

The two-dimensional HP lattice model mimics the
general properties of globular proteins. Under conditions
that favor denaturation (H-H attraction small), the chains
populate a relatively large ensemble of conformations,
corresponding to the denatured states of proteins. With
increasing H-H attraction, the chains undergo a relatively
sharp transition to a small ensemble of conformations (for
many sequences, only one or a few) that are compact and
have nonpolar cores. Helices and sheets arise in these
lattice models as a consequence of the compactness of the
chain.’® (See figure 7.) That is, with increasing compact-
ness, helices and sheets (particularly short ones) become
increasingly probable because the severe steric con-
straints make alternative configurations nonviable.
Hence the driving forces for collapse contribute substan-
tially to the development of secondary structure. The
length distributions of the helices and sheets that arise
from the compactnesses of chains on lattices are similar to
those for the known proteins, but these “packing forces”
that stabilize secondary structures are not.very specific:
To acquire the precise bond geometries of secondary
structures in real proteins also requires hydrogen bonding
and local interactions.

Evolutionary aspects of the HP lattice model, such as
the effect of mutations, have also been studied. The model
shows “mutational plasticity” corresponding to that of
real proteins. (Plasticity is the ability of a protein to
retain its native state in the face of small changes in
sequence.) Sequence convergence is common. That is, a
given native structure can be encoded by a large number of
different sequences, consistent with protein mutation
experiments.'8

The view that emerges from the simple models is that
the nonlocal interactions encoded in the HP sequence are
sufficient to lead to several of the main features of proteins
listed at the beginning of this article. A typical sequence
can collapse through a relatively sharp transition to a
small number of compact conformations, each with a core
of H monomers and made up of helices and sheets. This
suggests that the unique architecture of each individual
globular protein may be encoded mainly by the specific
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sequence of polar and nonpolar monomers. Therefore
protein-like architectures could perhaps be constructed
with other types of polymers, without the need for amino
acids or 20 different monomer types. Why then has this
type of molecular organization not been observed in other
polymers? One reason is that polymer chemists cannot
yet synthesize polymers with specific monomer sequences.
Existing synthetic polymers involve only the simplest
monomer sequences—homopolymers, or heteropolymers
with random or alternating sequences or with simple
repeated blocks such as (AAABBB),,.

Conformational searching

A major obstacle to folding proteins by computer is the
challenge of searching the large and complex energy
landscape to find the most stable states. Various statisti-
cal sampling methods are being explored, including Monte
Carlo techniques, simulated annealing and so-called
genetic algorithms.'® Efficiency can be increased in these
studies by using lower-resolution representations of pro-
teins, that is, by averaging over certain degrees of
freedom. For example, rather than representing each
atom explicitly, one can take whole amino acids or clusters
of a few atoms as the individual sites of interaction. Or, in-
stead of using a continuum representation, one can treat
chains as self-avoiding walk conformations on lattices.
Jeffrey Skolnick, Andrzej Kolinski and their coworkers
have developed high-resolution lattices, such as the lattice
designated (2,1,0), in which each bond involves 2 steps
along one of the three axes of a cubic lattice, 1 step along
another axis, and O steps along the third. They have
developed potential functions for this and other lattices
that include local and nonlocal interactions. The end
states of their Monte Carlo simulations resemble several
of the major structural motifs of globular proteins.

One general strategy for solving the protein folding
problem is based on the premise that low-resolution
methods can survey the broad landscape to reach near-
native states and thereby reduce any subsequent confor-
mational search by higher-resolution methods. Low-
resolution models require energy parameters. Recently, a
popular approach has been to use “statistical potentials,”
in which the frequencies of pairs and sometimes triplets of
amino acids within close spatial proximity in known
native proteins are tabulated and used as if they were
interaction free energies.?>?! These potentials have been
tested by exhaustive searching of restricted regions of
conformational space within which the native structure is
known to lie. The results have been encouraging: The
true native structures have low energies. Usually, how-
ever, there are also structures with lower energies that
have some incorrect folds. Statistical potentials have also
been very useful for inverse folding, that is, for testing
a sequence against a known structure to see if it will
fold to it.2°



Another approach has been to transform the energy
landscape to remove local minima and make the global
minimum more accessible.?? For example, Lucjan Piela
and coworkers suppose that the hills and valleys of the
energy landscape are like the peaks and troughs of a
hypothetical temperature distribution, which is then
transformed according to the time-dependent heat conduc-
tion equation to become a smoother surface. Teresa
Head-Gordon and coworkers change the landscape by
using physical-chemical insights about amino acid dimers
to allow only the correct chiralities, favored isomers and so
on. These approaches are still in the early stages.

The ultimate aim of these efforts in conformational
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Confinement of a polymer
chain to a compact region is
an important factor causing
helical and sheet substructures.
In proteins, compactness
appears to be driven mainly
by hydrophobic

interactions. Figure 7

searching is to use only knowledge of the amino acid
sequence to predict protein structure. However, even for
low-resolution methods, conformational space is still a
very large and tortuous place! To make the problem more
manageable, some current strategies require help from
prior knowledge of the native structure, such as assumed
secondary structures, surface shape or experimental
distance constraints, or they require extra nonphysical
forces that incorporate some information about the
desired native structure.

In our view, three hurdles remain to folding proteins
by computer. First, we need better ways to assess errors
and to determine the structural family of any arbitrary

Hydrophobic zipper hypothesis for how proteins might find their native states without
exhaustive exploration of conformational space: Hydrophobic monomers (red circles) first
pair up locally. This brings other hydrophobic monomer pairs into spatial proximity so they
too can then pair up, and so on. This process can lead to compact chains that have cores of

hydrophobic monomers and contain helices and sheets.

Figure 8
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conformation, so that we can distinguish a successful
prediction from a failure. Second, we need better knowl-
edge of the driving forces and of the shape of the energy
landscape. Third, we need faster search strategies and we
need to know more about search strategies: Which ones
can find global minima? How will we know whether a
minimum is global? Do proteins always fold to stable
states?

The HP model is a convenient tool for testing search
strategies because the global minima of HP sequences are
known and distinguishable from local minima by complete
enumeration. Two studies have explored the efficiencies
of search strategies. First, Eamonn M. O’Toole and
Athanassios Z. Panagiotopoulos® have applied two differ-
ent Monte Carlo sampling algorithms to the HP model.
O’Toole and Panagiotopoulos designed 48-mer conforma-
tions, to which they assigned HP sequences that would
have a hydrophobic core on a three-dimensional simple
cubic lattice. They sampled high-temperature denatured
conformations, then recooled them. They found that
Metropolis sampling—a commonly employed algorithm
for estimating the Boltzmann distribution of states—did
not return the system to a state of lowest energy, but that a
variant of the sampling method of Marshall N. Rosenbluth
and Arianna W. Rosenbluth does sample conformational
space efficiently enough to return to a low-energy state.

The second search strategy explored using the HP
model is based on the hypothesis that proteins may avoid
exhaustive searching by folding along “hydrophobic zip-
per” pathways. That is, H monomers close to each other in
the sequence come together first to form an H-H contact,
with only small conformational searching, and this in turn
brings other H monomers into proximity to form a next H-
H contact—and so on until many H monomers have paired
together to form a hydrophobic core. (See figure 8.) It is
found that hydrophobic zipper processes, while not ex-
haustive, nevertheless lead to single global minima for
about 70% of all possible HP sequences in the short-chain
two-dimensional HP lattice model.2*

These are just two among many possible search
strategies by which proteins, and perhaps computers,
might find the energetic global minima without exhaus-
tive searching.

While no protein has yet been accurately folded from
first principles, theory and computational methods for
protein folding are advancing on many fronts. To make
progress will require further development of force-field
models, methods for averaging over monomer and solvent
degrees of freedom, simplified sequence-structure models,
search strategies and ways to test search strategies, error
measures for testing predicted structures, and refined
treatments of excluded-volume and sequence effects in
heteropolymer collapse theories. There is no shortage of
interesting physics problems here!

*x  x %
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