
THE PROTEIN FOLDING PROBLEM 
Understanding and predicting the three-dimensional structures 
of proteins from their sequences of amino acids requires 
both basic knowledge of molecular forces and sophisticated 
computer programs that search for the correct configurations. 

Hue Sun Chon and Ken A Dill 

Thousands of different types of proteins occur in biological 
organisms. They are responsible for catalyzing and 
regulating biochemical reactions, transporting molecules, 
the chemistry of vision and of the photosynthetic conver­
sion of light to growth, and they form the. basis of 
structures such as skin, hair and tendon. Protein mole­
cules have remarkable structures. A protein is a linear 
chain of a particular sequence of monomer units. A major 
class of proteins, globular proteins, ball up into compact 
configurations that can have much internal symmetry. 
(See figure 1.) Each globular protein has a unique folded 
state, determined by its sequence of monomers. 

The protein folding problem is to predict the compact 
three-dimensional structure from knowledge of the mono­
mer sequence. It is one of the fundamental problems in 
biophysical science. Understanding the physics of protein 
conformations will be of great importance for biomedicine: 
in designing novel proteins, in decoding the genetic 
information obtained by the Human Genome Project, in 
designing new drugs and in trying to understand the 
structures and functions of the thousands of protein 
sequences that are being discovered every day in biotech­
nology labs. 

What are proteins? 
A protein is a linear polymer molecule, a chain of tens to 
thousands of monomer units strung together like beads in 
a necklace. The monomers a re the 20 naturally occurring 
amino acids. Different proteins have different sequences 
of the amino acid monomers, and the amino acid sequence 
is known as the primary structure of a protein. Proteins 
may be classified into three types: fibrous, membrane and 
globular. Fibrous proteins such as collagen, which con­
tributes to tendon and bone, and a-keratin, which makes 
up hair, skin and feathers, serve mainly structural roles. 
Membrane proteins reside in cellular membranes, where 
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they mediate the exchange of molecules and information 
across cellular boundaries. 

The main focus of this article is globular proteins. 
Enzymes, which are the catalysts for virtually all bio­
chemical reactions in living cells, are globular proteins. A 
typical cell contains 1000 to 4000 different enzymes. 
Although they are chain molecules, globular proteins have 
structures and properties quite different from those of 
other polymeric states of matter. Because the energy 
differences caused by internal bond rotations are small, 
polymers usually have many different conformations. 
(See figure 2.) Most synthetic polymeric materials are 
liquids, glasses, elastomers (such as rubber) or composite 
solutions, in which individual molecules have diverse 
conformations, most of which are open and interpenetrat­
ed by other molecules. In contrast, the most important 
state of a globular protein, known as its native or folded 
state, is extremely compact and is unique. That is, a given 
protein folds to only one native state (although the native 
states of different proteins can be quite similar). The so­
called secondary structure of a globular protein includes 
hydrogen-bonded a-helices and.B-sheets (the latter formed 
of two or more adjacent strands running parallel or 
antiparallel). (See figure 3.) The large-scale architecture 
of a protein-how the helices, sheets and other secondary 
structures fit together-is called its tertiary structure. 
Proteins are in their native states in aqueous solvents near 
neutral pH at 20-40 •c; this is the typical cellular 
environment. Under some nonphysiological conditions, 
such as high temperature, acidic or basic pH, or in some 
nonaqueous solvents, the unique folded structure of a 
protein unfolds or denatures, often reversibly, through a 
sharp transition to an ensemble of more expanded 
conformations. 

The folding equilibrium is shown schematically in 
figure 1. Under physiological conditions the native state is 
marginally more stable (typically by about 40 kJ per mole 
of protein) than the ensemble of denatured conformations. 
Marginal stability may be necessary for biological func­
tion, since catalysis and binding properties of proteins 
must be responsive to the environment and to regulatory 
molecules. For example, hormones and biological signal-
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Folding 

Folding of a globular protein from its denatured state (left) to its unique, compact native state (right) is 
encoded in its sequence of amino acid monomers. A complete understanding of this "second genetic code" 

continues to elude researchers . Figure 1 

ing molecules cause conformational changes when they 
bind to their target proteins, and the ability to chemically 
degrade proteins is essential for the regulation of protein 
concentrations in the cell. Nevertheless marginal stabil­
ity poses the problem for researchers of understanding the 
small net effect of large and diverse driving forces . Among 
the 20 amino acids, some have net charge, all can form hy­
drogen bonds, and about half of them are nonpolar to 
varying degrees. A large contribution to the balance of 
forces also comes from the decrease in conformational 
entropy upon folding. 

The native state of a typical globular protein has 
several remarkable properties: 
t> It is as tightly packed as a small-molecule crystal, but it 
is usually devoid of the simple spatial regularity of a 
crystal. 
t> Amino acids are of different types, often classified as 
hydrophobic monomers (denoted by H), which are oil-like 
and interact unfavorably with water, and polar or charged 
monomers (denoted by P), which interact favorably with 
water. An example of an H monomer is the amino acid 
leucine; an example of a P monomer is serine. In native 
conformations of globular proteins, the H monomers tend 
to be buried inside the core of the globule, implying that 
proteins are driven to compactness by the force that causes 
oil and water to separate (the hydrophobic interactions, 
which we will discuss further below). P monomers tend to 
reside on the surface of the globule, although exceptions 
are common. 
t> Some proteins have beautiful symmetries in their 
secondary and tertiary structures, but other globular 
proteins have little internal symmetry. Proteins come in 
families of structures, 1 such as bundles of helices, or 
barrels or sandwiches of /)-sheets. 
t> Each amino acid sequence folds into a unique native 
structure. DNA molecules in the genes encode the amino 
acid sequences. Most natural sequences are not simple 
periodic repeats of monomers. 
t> Under folding conditions, the native state is often 
thermodynamically stable (apart . from small-amplitude 
fluctuations in the atomic positions, which can show 
glassy dynamics). In contrast, many synthetic polymeric 

materials are glassy and metastable, and their structures 
are dependent on their preparation history. 

This set of properties has not been found in nonbiolog­
ical polymers. 

The second genetic code 
The balance of forces that folds a protein into its unique, 
compact native structure is encoded within its amino acid 
sequence. This correspondence between sequence and 
structure is sometimes referred to as the "second genetic 
code." (The first genetic code is the correspondence 
between the base sequence of a DNA molecule and the 
amino acid sequence of the protein whose synthesis it 
controls.) 

Why is solving the folding problem-understanding 
and predicting the native conformation of a protein from 
its amino acid sequence-important? First, because we 
wish to know how such remarkable states of matter arise 
from the underlying laws of chemistry and physics. To 
understand how a protein functions, we must know its 
three-dimensional structure. Learning the structures of 
proteins is a long process: About 400 protein structures 
are now known at atomic resolution from x-ray crystallog­
raphy and from multidimensional nuclear magnetic 
resonance experiments. Learning amino acid sequences, 
however, is much simpler, and the database of sequences is 
already vast: About 40 000 sequences are known, and the 
number of new sequences is approximately doubling every 
year. The Human Genome Project promises to increase 
this rate. To predict the biological function of a ll these 
sequenced proteins requires either the experimental 
determination of thousands of structures or the solution of 
the folding problem. 

Second, solving the folding problem would unleash 
considerable new power in biotechnology, in principle 
permitting the ab initio design of new proteins. Applica­
tions include new biological and chemical catalysts; 
biosensors; pharmaceuticals; hormones and biological 
regulatory agents; the conversion of optical to chemical 
energy, as in photosynthesis, or chemical energy to 
motion, as in muscles and other protein motor machinery; 
and the storage of energy or information on the size scale 

PHYSICS TODAY FEORUARY 1993 25 



of angstroms. The solution would let us predict which 
sequences are likely to be useful for these purposes and 
which are not. The problem of protein design is called the 
inverse folding problem: A protein folding algorithm 
would take an amino acid sequence as its input and would 
output a predicted native structure; an inverse folding 
algorithm would use as input a desired native structure 
and output a list of sequences that fold into it. The folding 
and inverse folding problems are different formulations of 
the same problem, and both call for an understanding of 
the relationships between amino acid sequences and 
native structures. 

We can learn about the relationship between se­
quence and structure by observing patterns in the 
database of known protein structures. Lists have been 
compiled of the propensities of the various amino acids to 
be in helices, sheets or turns in the native conformations of 
proteins. Similar taxonomic lists now exist for pairs and 
triplets of amino acids, longer sequence fragments, short 
pieces of chains in loops and so on. Such lists form the ba­
sis of a strategy: Predict the likely secondary structure 
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patterns from the sequence and then attempt to assemble 
the predicted secondary structures into tertiary structures 
in ways that are consistent with high packing density, a 
nonpolar core and other constraints.2 Neural nets, which 
are highly suited to performing pattern recognition, have 
also been used to learn about the relationship of sequence 
to secondary structure.3 

Taxonomic methods accurately predict the conforma­
tions of about 60-70% of amino acids in proteins. Higher 
success rates can be achieved when there is additional 
knowledge, such as when it is known a priori to which 
family the protein of interest belongs. A limitation of 
these methods has been that they capture only the local in­
teractions, that is, the interactions among monomers that 
are near neighbors in the sequence (see figure 4), and 
neglect nonlocal factors, including hydrophobic interac­
tions, that involve monomers that are far apart in the 
sequence. Peter G. Wolynes and his colleagues are 
developing a method that uses a neural-net-like procedure 
to " learn" the coefficients of both local and nonlocal 
energy terms in a semiempirical Hamiltonian function. 
Another approach to including the nonlocal interactions is 
that of Henrik Bohr and coworkers, in which neural nets 
" learn" distance matrices, that is, the spatial separations 
of pairs of amino acids in proteins. 3 

Physical driving forces 
Ultimately we would like to go beyond such heuristic 
approaches and understand how to fold a protein based on 
the physical driving forces. To find the stable native state 
of a protein, ideally we should compute, for every possible 
conformation of the chain, the sum of the free energies of 
the atomic interactions within the protein and with the 
solvent and then find the conformation with the lowest 
free energy. But this is not feasible, because the number of 
conformations N of a chain molecule grows exponentially 
with the chain length: N~p.n, where n is the number of 
monomers andp.=2-6 is the number of rotational isomers, 
determined by the types of monomers that make up the 
polymer. (See figure 2.) An exhaustive search is not a 
practical solution to the folding problem for a computer 
algorithm. Nor is it practical for a real protein: This is 
the Levinthal paradox, named after Cyrus LevinthaV who 
first raised the question, How does a protein find the 
global optimum (its native state) without a global search? 
Proteins fold much faster-by tens of orders of magni­
tude-than the time a chain molecule would need to 
undertake a global search. What vast parts of conforma­
tional space does the protein avoid? 

Proteins are not the only physical systems that find 
thermodynamically stable states in the face of large 
numbers of degrees of freedom. Physical systems settle 
into equilibrium states by processes that are seldom 
random or exhaustive; rather they are directed by 
energies. The free energy as a function of the degrees of 
freedom is the energy landscape, or conformational space. 

Different interatomic bond conformations 
(generated by the indicated rotations) have 
only small energy differences, allowing many 
overall conformations of a polymer chain to 
arise. Figure 2 



Structures of globular proteins include ordered assemblies·of helices (left) and sheets (m iddle) and mixtures of 
helices and sheets (right). Other proteins have less regularity. (From C. Branden, J. Tooze, Introduction to 
Protein Structure, Garland, New York, 1991.) Figure 3 

One way to explore such landscapes is by molecular 
dynamics techniques, in which a computer numerically 
solves Newton's laws of motion using interaction energies 
obtained from experiments on smaller molecules. 

These force-field simulations5 have contributed much 
to our understanding of proteins and polymers, but to find 
the global minimum for a protein is to search for a needle 
in a very large haystack. Even a small protein contains 
tens of thousands of atoms, and to treat all the major 
forces properly the simulation must include the surround­
ing water molecules, adding thousands of additional 
atoms. Moreover, because the harmonic motions of 
bonded atoms have characteristic times of around 10- 14-
10- 13 seconds, stable numerical integration requires 
femtosecond (10- 15 second) time steps. Supercomputers 
can currently simulate up to nanoseconds of real-time 
protein dynamics with such short time steps, but this scale 
doesn't approach the 10- 1- 103 seconds typically required 
to fold real proteins. Even though parallel processing 
supercomputer power is increasing about a thousandfold 
every 10 years, it could be 10-30 years before brute-force 
molecular dynamics reliably folds proteins. (See figure 5.) 
Success in folding proteins by molecular dynamics will 
also require improvements in the accuracy of the simulat­
ed force fields. 

The shape of the energy landscape ie determined by 
the forces of folding. Alfred Mirsky and Linus Pauling 
proposed in 1936 that hydrogen bonding is the dominant 
force of folding.6 Pauling, R. B. Corey and Herman R. 
Branson built models of chains of amino acids to deter­
mine the peptide bond geometry. 7 By finding conforma­
tions that make good hydrogen bonds, they discovered a­
helices and /3-sheets, and predicted they would be impor­
tant components of proteins. As figure 3 illustrates, their 
prediction was correct. 

But in the 1950s, Walter Kauzmann pointed out that 
hydrogen bonding would not strorigly favor the folded 
state relative to unfolded states, because unfolded confor­
mations can form hydrogen bonds with water that should 
be just as strong as the intrachain hydrogen bonds in the 
folded state.8 He felt that hydrophobic interactions were a 
stronger force for folding proteins. Despite many theoreti­
cal and experimental studies since Kauzmann's work, 

however, the molecular details of hydrophobic interac­
tions are not yet clearly understood. In thermodynamic 
terms, we know that the mixing of nonpolar, oil-like 
molecules with water has a large positive free energy, is 
disfavored by entropy near room temperature and leads to 
a large increase in heat capacity. The most common 
interpretations of these effects involve orientational 
ordering of water molecules upon the dissolving of a 
nonpolar substance. 

In the 20 years following Kauzmann's observation, 
the view emerged that hydrophobic interactions nonspe­
cifically favor compactness and that hydrogen bonds and 
local interactions determine the detailed internal archi­
tecture and sequence-dependent uniqueness of a native 
conformation. A different view has recently entered into 
protein folding research-that hydrophobicity and nonlo­
cal interactions are a major factor in causing not only the 
compactness but also the uniqueness and internal archi­
tectures of globular proteins. (References 9 and 10 review 
this viewpoint.) 

Homopolymer collapse theories 
What drives a polymer to become compact? A polymer 
chain composed of oil-like monomers will ball up in water 
to minimize the area of unfavorable monomer-water 
contacts. But since there are far fewer compact than 
expanded conformations of chain molecules, the greater 
conformational entropy in the expanded state will oppose 
collapse. The balance of these forces will determine the 
average chain compactness. 

These ideas, rooted in the work of Paul J. Flory in 
1949, led to the first theory of the collapse of homopoly­
mers (polymers composed of a single species of monomer), 
developed by Oleg B. Ptitsyn and Yuili Eizner in 1965, and 
to subsequent mean-field models. 10

·
11 According to these 

models, changing the strength of the monomer-monomer 
attraction leads to a sharp collapse from open to compact 
conformations. In this approach, the chain is assumed to 
follow a three-dimensional random walk, and three terms 
contribute to the free energy as a function of the chain 
compactness. The first two come from the entropy, which 
is assumed to be factorable into two parts: "elasticity," 
which originates from the re.duction of entropy on 
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stretching (or compaction)-the same as the retractive 
force of rubber-and an "excluded-volume correction" to 
account approximately for the impossibility of chain self­
intersections, which is neglected in the elasticity factor. 
Excluded volume is accounted for in the Flory approxima­
tion based on the following estimate: If there are m 
monomer-sized volume elements, and a chain has n 
monomers, then for a fraction m!/[mn(m- n)!] of all 
random walks the chain will not violate physical reality by 
crossing through itself. 10 The third contribution to the 
free energy is the energetics of monomer-monomer and 
monomer-solvent contacts. It is approximated using the 
Bragg-Williams mean-field approximation, which as­
sumes a random sea of monomers in which the number of 
contacts among monomers is proportional to the square of 
the monomer density. 

What is the shape of the free energy landscape for 
polymer collapse? In a first-order transition, the free 
energies of native and denatured states would be minima 
separated by a free-energy barrier. In a higher-order 
transition, there would be no barrier. Some mean-field 
models predict a first-order transition, but it is possible 
that the free energy barrier in those models is an artifact 
of their approximations. 

There have been several improvements in collapse 
theories. Sam F. Edwards introduced a self-consistent 
field approach in 1965 to model self-avoiding chains more 
accurately. Here the excluded-volume repulsion between 
individual monomers is approximated as a field that is 
self-consistently determined as a function of the monomer 
density. In 1968 Ilya M. Lifshitz proposed a general self­
consistent field formalism for the study of polymer 
collapse; it has been further developed by his coworkers 
Alexander Yu. Grosberg and Alexey R. Khokhlov. In a 
first approximation similar to the approach of Flory, they 
found a second-order transition for the collapse of infinite­
ly long homopolymer chains. More recently, by allowing 
for a nonuniform spatial density distribution of monomers 
and by treating the en tropic restrictions on chain turns at 
globule surfaces, Grosberg and Dmitry V. Kuznetsov 
found that coil-globule transitions for finite-length homo­
polymers are considerably sharper-more like first-order 
transitions. A principal difficulty in devising refined 
theories is the many-body nature of the chain self­
collisions in compact conformations.12 

Models of heteropolymer collapse 
Theories of the collapse of heteropolymers (polymers made 
of more than one monomer type), such as proteins, are in a 

Interactions in polymers may be 
divided into local (those among near 

neighbors in the sequence) and nonlocal 
(those among monomers that are far 

apart in the sequence). The importance 
of both types of interaction contributes 

to the difficulty of modeling 
folding. Figure 4 
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more primitive state than theories of homopolymers. 10 

Heteropolymer collapse differs in important ways. For 
example, heteropolymers can organize into a core and 
surface of two different monomer types, while a homopoly­
mer does not have this degree of freedom. It remains a 
challenge to learn how heteropolymers can collapse to 
unique states and how heteropolymer sequences produce 
the thousands of unique structures that are native 
proteins. 

One heteropolymer collapse model is based on the 
Flory and Bragg-Williams mean-field approximations 
described above. 13 It treats the thermodynamic properties 
of collapse-how collapse depends on temperature, the 
composition and length of the chain, the solvent, and 
effects of pH and salt concentration-but not the kinetic 
aspects of folding. Consistent with experiments, it pre­
dicts that there should be three stable states under 
different conditions: native, compact denatured and high­
ly unfolded. 

Another approach is based on spin glass models. 14 

The concept of spin glass was first proposed by Edwards 
and Philip W. Anderson in 1975 to account for the 
m1tgnetic properties of dilute alloys of manganese in 
copper. (See the Reference Frame columns by Anderson 
in PHYSICS TODAY, January, March, June and September 
1988, July and September 1989, and March 1990.) 
Applications of spin glass methods to proteins do not try to 
model the folding of a specific amino acid sequence to a 
specific structure. Rather they consider statistical ensem­
bles of amino acid sequences, modeled by assigning 
random interaction energies between monomers on a 
chain. By averaging over the ensemble these methods 
seek to learn about the folding process itself. 

Joe D. Bryngelson and Wolynes were the first to apply 
spin glass concepts to the coil-to-globule folding of 
proteins, in 1987. In their model, interactions between 
monomers are assumed to be randomly distributed, as in 
Bernard Derrida's 1981 random-energy model. They 
predict different folding and "freezing" transitions of a 
heteropolymer: A chain may fold into a given native 
structure specified in advance or freeze into a collection of 
"misfolded" (non-native) structures that have extremely 
slow dynamics of interconversion. Other model studies 
have also found that the kinetic accessibility of the native 
structure is strongly sequence dependent. 15 

Other spin glass models14 include one introduced in 
1988 by Thomas Garel and Henri Orland. In their 
heteropolymer model of freely jointed chains, the pair 
interaction Bu between monomers i and j is a random 

Local interaction 
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variable. Then the spin glass procedure of averaging 
over different "replicas" is carried out. (See Anderson's 
June 1988 column.) BiJ is a parameter that represents 
the heterogeneity of interactions. .Eugene I. Shakhno­
vich and Alexander M. Gutin developed a heteropolymer 
model in which the distribution of monomer-pair interac­
tion strengths B u was assumed to be Gaussian and 
which included a three-monomer hard-core repulsion 
term. In their theory the width B of the heterogeneity 
distribution Bu plays the crucial role of determining the 
number of lowest-energy states of the model. If the 
sequences are sufficiently heterogeneous (B large), 
Shakhnovich and Gutin find that only a few states 
dominate in the low-temperature phase. Thus they 
conclude that unique protein folds can arise simply from 
sequence heterogeneity. 

Collapse theories show that heteropolymers can 
undergo sharp transitions that resemble protein folding, 
from open ensembles to compact conformations with 
solvent-averse (H) monomers sequestered into a core. 
Moreover, from the spin glass models described above and 
exact models described in the next section, it is clear that 
heteropolymers can collapse to only a very small number 
of compact conformations. This contrasts 8harply with 
the situation for homopolymers, which collapse to large 
ensembles of compact conformations, and it suggests that 
the uniqueness of protein native states may be largely 
encoded in the nonlocal interactions (mainly the pattern 
of hydrophobic monomers in the sequence) rather than in 
the local interactions. The limitation of existing hetero­
polymer collapse theories is that they consider only the 
composition (the number of monomers of each type) of a 
sequence and, in some of the spin glass models, the 

distribution of interaction energies, but otherwise they 
assume the sequences are random. 

Simplified exact models 
Exploring the relationships of amino acid sequences to 
native structures requires models different from existing 
collapse theories, which average out the effects of the 
sequence, and atomic-resolution molecular dynamics sim­
ulations, which are limited by computational restrictions. 
To explore sequence-structure relationships, a class of 
model has emerged in which proteins are represented as 
self-avoiding walks on lattices. Specific sequences of 
monomers are studied in chains short enough that the full 
conformational space can be enumerated exhaustively. 

The first exact enumeration of short chains on 
lattices was the work of W. J . C. Orr in 1947. Orr 
enumerated all the self-avoiding conformations on lattices 
for chains less than 10 monomers long. With improve­
ments in computer technology, Cyril Domb, M . F. Sykes 
and their coworkers explored longer chains, 16 providing 
the underpinnings for many of the modern developments 
in polymer theory, including scaling laws and renormal­
ization-group methods. 

Similar in spirit is the HP lattice model for proteins, 17 

shown in figure 6. Chains are configured as self-avoiding 
walks on two-dimensional square lattices or three-dimen­
sional simple cubic lattices. Based on the assumption that 
the hydrophobic interaction is the dominant force in 
protein folding,9 a protein is modeled as a specific sequence 
of hydrophobic (H) and hydrophilic (P) monomers (for 
example, PHHPHP ... ). Each interaction between two H 
monomers that are adjacent in space but not covalently 
linked is favored by a contact energy€ < 0, and all other in-
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HP lattice model represents a 
protein as a sequence of 

hydrophobic (H, red) and 
polar (P, blue) monomers on a 

lattice in two or three 
d.imensions. The model 

mimics the general properties 
of globular proteins when H-H 

contacts (purple) are 
made energetically 

favorable. Figure 6 
No H-H contacts 

teraction energies are zero. For short chains, all the 
conformations can be enumerated and their energies 
evaluated to find the global energetic minimum for each 
HP sequence. The properties of this model are now known 
in some detail for the two-dimensional square lattice. For 
the chain lengths for which exhaustive enumeration is 
possible (up to about 30 monomers), two-dimensional 
models more accurately represent the physically impor­
tant surface-interior ratios of proteins than do three­
dimensional models. To achieve the correct surface­
interior ratio to represent a protein molecule the size of 
myoglobin requires a chain of 154 monomers in three 
dimensions, but only about 16-20 monomers in two 
dimensions. 

The two-dimensional HP lattice model mimics the 
general properties of globular proteins. Under conditions 
that favor denaturation (H-H attraction small), the chains 
populate a relatively large ensemble of conformations, 
corresponding to the denatured states of proteins. With 
increasing H-H attraction, the chains undergo a relatively 
sharp transition to a small ensemble of conformations (for 
many sequences, only one or a few) that are compact and 
have nonpolar cores. Helices and sheets arise in these 
lattice models as a consequence of the compactness of the 
chain. 10 (See figure 7.) That is, with increasing compact­
ness, helices and sheets (particularly short ones) become 
increasingly probable because the severe steric con­
straints make alternative configurations nonviable. 
Hence the driving forces for collapse contribute substan­
tially to the development of secondary structure. The 
length distributions of the helices and sheets that arise 
from the compactnesses of chains on lattices are similar to 
those for the known proteins, but these "packing forces" 
that stabilize secondary structures are not very specific: 
To acquire the precise bond geometries of secondary 
structures in real proteins also requires hydrogen bonding 
and local interactions. 

Evolutionary aspects of the HP lattice model, such as 
the effect of mutations, have also been studied. The model 
shows "mutational plasticity" corresponding to that of 
real proteins. (Plasticity is the ability of a protein to 
retain its native state in the face of small changes in 
sequence.) Sequence convergence is common. That is, a 
given native structure can be encoded by a large number of 
different sequences, consistent with protein mutation 
experiments. 18 

The view that emerges from the simple models is that 
the nonlocal interactions encoded in the HP sequence are 
sufficient to lead to several of the main features of proteins 
listed at the beginning of this article. A typical sequence 
can collapse through a relatively sharp transition to a 
small number of compact conformations, each with a core 
of H monomers and made up of helices and sheets. This 
suggests that the unique architecture of each individual 
globular protein may be encoded mainly by the specific 
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sequence of polar and nonpolar monomers. Therefore 
protein-like architectures could perhaps be constructed 
with other types of polymers, without the need for amino 
acids or 20 different monomer types. Why then has this 
type of molecular organization not been observed in other 
polymers? One reason is that polymer chemists cannot 
yet synthesize polymers with specific monomer sequences. 
Existing synthetic polymers involve only the simplest 
monomer sequences-homopolymers, or heteropolymers 
with random or alternating sequences or with simple 
repeated blocks such as (AAABBB)n. 

Conformational searching 
A major obstacle to folding proteins by computer is the 
challenge of searching the large and complex energy 
landscape to find the most stable states. Various statisti­
cal sampling methods are being explored, including Monte 
Carlo techniques, simulated annealing and so-called 
genetic algorithms.19 Efficiency can be increased in these 
studies by using lower-resolution representations of pro­
teins, that is, by averaging over certain degrees of 
freedom. For example, rather than representing each 
atom explicitly, one can take whole amino acids or clusters 
of a few atoms as the individual sites of interaction. Or, in­
stead of using a continuum representation, one can treat 
chains as self-avoiding walk conformations on lattices. 
Jeffrey Skolnick, Andrzej Kolinski and their coworkers 
have developed high-resolution lattices, such as the lattice 
designated (2,1,0), in which each bond involves 2 steps 
along one of the three axes of a cubic lattice, 1 step along 
another axis, and 0 steps along the third. They have 
developed potential functions for this and other lattices 
that include local and nonlocal interactions. The end 
states of their Monte Carlo simulations resemble several 
of the major structural motifs of globular proteins. 

One general strategy for solving the protein folding 
problem is based on the premise that low-resolution 
methods can survey the broad landscape to reach near­
native states and thereby reduce any subsequent confor­
mational search by higher-resolution methods. Low­
resolution models require energy parameters. Recently, a 
popular approach has been to use "statistical potentials,". 
in which the frequencies of pairs and sometimes triplets of 
amino acids within close spatial proximity in known 
native proteins are tabulated and used as if they were 
interaction free energies.20

·
21 These potentials have been 

tested by exhaustive searching of restricted regions of 
conformational space within which the native structure is 
known to lie. The results have been encouraging: The 
true native structures have low energies. Usually, how­
ever, there are also structures with lower energies that 
have some incorrect folds. Statistical potentials have also 
been very useful for inverse folding, that is, for testing 
a sequence against a known structure to see if it will 
fold to it.20 
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Confinement of a polymer 
chain to a compact region is 
an important factor causing 
helical and sheet substructures. 
In proteins, compactness 
appears to be driven mainly 
by hydrophobic 
interactions. Figure 7 

Another approach has been to transform the energy 
landscape to remove local minima and make the global 
minimum more accessible.22 For example, Lucjan Piela 
and coworkers suppose that the hills and valleys of the 
energy landscape are like the peaks and troughs of a 
hypothetical temperature distribution, which is then 
transformed according to the time-dependent heat conduc­
tion equation to become a smoother surface. Teresa 
Head-Gordon and coworkers change the landscape by 
using physical-chemical insights about amino acid dimers 
to allow only the correct chiralities, favored isomers and so 
on. These approaches are still in the early stages. 

searching is to use only knowledge of the amino acid 
sequence to predict protein structure. However, even for 
low-resolution methods, conformational space is still a 
very large and tortuous place! To make the problem more 
manageable, some current strategies require help from 
prior knowledge of the native structure, such as assumed 
secondary structures, surface shape or experimental 
distance constraints, or they require extra nonphysical 
forces that incorporate some information about the 
desired native structure. 

In our view, three hurdles remain to folding proteins 
by computer. First, we need better ways to assess errors 
and to determine the structural family of any arbitrary The ultimate aim of these efforts in conformational 

TIME 

1=1 

1=3 

Hydrophobic zipper hypothesis fo r how proteins might find their native states w ithout 
exhaustive explo ration of conformational space: Hydrophobic monomers (red circles) first 
pair up loca lly . This brings other hydrophobic monomer pairs into spatial proximity so they 
too can then pair up, and so on. This process can lead to compact chains that have cores of 
hydrophobic monomers and contain helices and sheets. Figure 8 
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conformation, so that we can distinguish a successful 
prediction from a failure. Second, we need better knowl­
edge of the driving forces and of the shape of the energy 
landscape. Third, we need faster search strategies and we 
need to know more about search strategies: Which ones 
can find global minima? How will we know whether a 
minimum is global? Do proteins always fold to stable 
states? 

The HP model is a convenient tool for testing search 
strategies because the global minima of HP sequences are 
known and distinguishable from local minima by complete 
enumeration. Two studies have explored the efficiencies 
of search strategies. First, Eamonn M. O'Toole and 
Athanassios Z. Panagiotopoulos23 have applied two differ­
ent Monte Carlo sampling algorithms to the HP model. 
O'Toole and Panagiotopoulos designed 48-mer conforma­
tions, to which they assigned HP sequences that would 
have a hydrophobic core on a three-dimensional simple 
cubic lattice. They sampled high-temperature denatured 
conformations, then recooled them. They found that 
Metropolis sampling-a commonly employed algorithm 
for estimating the Boltzmann distribution of states-did 
not return the system to a state oflowest energy, but that a 
variant of the sampling method of Marshall N. Rosenbluth 
and Arianna W. Rosenbluth does sample conformational 
space efficiently enough to return to a low-energy state. 

The second search strategy explored using the HP 
model is based on the hypothesis that proteins may avoid 
exhaustive searching by folding along " hydrophobic zip­
per" pathways. That is, H monomers close to each other in 
the sequence come together first to form an H-H contact, 
with only small conformational searching, and this in turn 
brings other H monomers into proximity to form a next H­
H contact-and so on until many H monomers have paired 
together to form a hydrophobic core. (See figure 8.) It is 
found that hydrophobic zipper processes, while not ex­
haustive, nevertheless lead to single global minima for 
about 70% of a ll possible HP sequences in the short-chain 
two-dimensional HP lattice model.24 

These are just two among many possible search 
strategies by which proteins, and perhaps computers, 
might find the energetic global minima without exhaus­
tive searching. 

While no protein has yet been accurately folded from 
first principles, theory and computational methods for 
protein folding are advancing on many fronts. To make 
progress will require further development of force-field 
models, methods for averaging over monomer and solvent 
degrees of freedom, simplified sequence-structure models, 
search strategies and ways to test search strategies, error 
measures for testing predicted structures, and refined 
treatments of excluded-volume and sequence effects in 
heteropolymer collapse theories. There is no shortage of 
interesting physics problems here! 

We thank Sarina Bromberg, Fred Cohen, Klaus Fiebig, Bob 
Jernigan, Peter Kollman, Tack Kuntz, Thanasis Panagiotopoulos, 
Jan W. H. Schreurs, Dirk Stigter, Karen Tang, Don Wallace and 
Peter Wolynes for helpful comments. 
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