BOOKS

goods. Mandel's book explains how to apply some of these same concepts to evaluate and control the measurement process. Because examples are chosen from a wide range of scientific and engineering applications, the book is not a physics text. But it is a worthwhile read and a good complement to, though not a replacement for, texts such as Random Data: Analysis and Measurement Procedures by Julius S. Bendat and Allan G. Piersol (Wiley, New York, 1971), Statistics for Experimenters by George E. P. Box, William G. Hunter and J. Stuart Hunter (Wiley, New York, 1978) and Exploratory Data Analysis by John W. Tukey (Addison-Wesley, Reading, Mass., 1977). (Experimenters in every branch of science should read these books or their equivalents.)

The introductory material in the first few chapters—on basic statistics, precision, accuracy and variability—is generally clear and well illustrated. I found Mandel's treatment later in the book of the structure of data in two-way designs enlightening, and his use of h and k statistics for interlaboratory comparisons was completely new to me.

The book can be read by anyone who has mastered first-semester calculus, and it is intended for a broad range of experimental scientists. My most severe complaint about the book is that it neglects some important issues, such as blocking, randomization, nonparametric statistics and modern techniques for exploratory data analysis. Thus, if this is the only book you read on this subject, there will be serious gaps in your knowledge. However, there are limits to what can be presented in 200 pages. On a four-star scale, I give this book three stars.

> James R. Matey David Sarnoff Research Center Princeton, New Jersey

Advanced General Relativity

John M. Stewart Cambridge U. P., New York, 1991. 228 pp. \$49.50 hc ISBN 0-521-32319-3

The title of this book is slightly misleading: Rather than a comprehensive survey of all possible advanced topics in relativity, the book's subject is the mathematics required to discuss gravitational radiation (in which John M. Stewart is a leading expert). Recent progress in techniques of gravitational wave detection is bringing us to the sensitivities

at which, by all reasonable estimates, we should be able to detect some definite signals. Hence, the theoretical tools for detailed analytical and numerical prediction are becoming increasingly important. Stewart's concise and lucid summary, the only book of its kind, is therefore very timely. In addition to topics that have been treated in other texts, one finds here well-organized, clear discussions of material not readily obtainable

elsewhere—including some from Stewart's own research.

The book is self-contained, providing a comprehensive but terse introduction to the requisite differential geometry, as well as its use in Newtonian theory and in special and general relativity. A reader new to the subject, however, would probably find this section hard to read compared with the more leisurely treatments in introductory texts. The level of pre-

Plenum Books THE LATEST THEORY AND APPLICATIONS

SYNCHROTRON RADIATION RESEARCH Advances in Surface and Interface Science edited by Robert Z. Bachrach

In this authoritative two-volume sourcebook, internationally recognized experts compile the latest advances in the application of a broad range of measurement techniques utilizing synchrotron radiation, discuss specific issues in surface physics, and provide an overview of source and monochromator technology.

Volume 1: Techniques

Volume 1 features an introductory chapter on the generation and properties of synchrotron radiation, and details surface science study techniques, examples of research advances with the application of synchrotron radiation, and other methodologies used in surface science research. 0-306-43872-0/518 pp. + index/ill./1992/\$115.00

Volume 2: Issues and Technology

Volume 2 covers specific issues in surface physics and details the new undulator source and advanced monochromator technology. 0-306-43873-9/390 pp. + index/ill./1992/\$95.00

STRUCTURAL AND PHASE STABILITY OF ALLOYS edited by J. L. Morán-López, F. Mejía-Lira[†], and J. M. Sanchez

Structural and Phase Stability of Alloys offers definitive coverage of current experimental and theoretical alloy research, including magnetic and non-magnetic alloys, surfaces, thin films, and nanostructures. Papers explore the use of phenomenological approaches for the description of thermodynamic bulk and surface properties, first-principle theories of alloy phase stability, and related topics.

0-306-44211-6/278 pp./ill./1992/\$69.50

PHASE TRANSITIONS IN SURFACE FILMS 2 edited by H. Taub, G. Torzo, H. J. Lauter, and S. C. Fain, Jr.

This compilation reviews current research on phase transitions of surfaces, interfaces, and thin films, and their related structural and dynamical properties. Volume 267 in the NATO ASI Series: Series B: Physics. 0-306-44005-9/proceedings/518 pp/ill/1991/\$125.00

Book prices are 20% higher outside US & Canada.

PLENUM PUBLISHING CORPORATION

233 Spring Street, New York, NY 10013-1578

Telephone orders: 212-620-8000/1-800-221-9369

sentation is aimed at graduate students and researchers, who would find such a summary of the field useful.

Stewart describes the two-component spinor formalism associated with Ted Newman and Roger Penrose, and reviews some of its applications. This part will become required reading for my graduate students. It is both an excellent survey of the technique aimed at the practical use

of the formalism and an introduction to the more extensive treatment in the two-volume *Spinors and Space-Time* (Cambridge U. P., New York, 1984) by Penrose and Wolfgang Rindler. The appendix, which contains complete sets of equations and transformation laws, is valuable in itself.

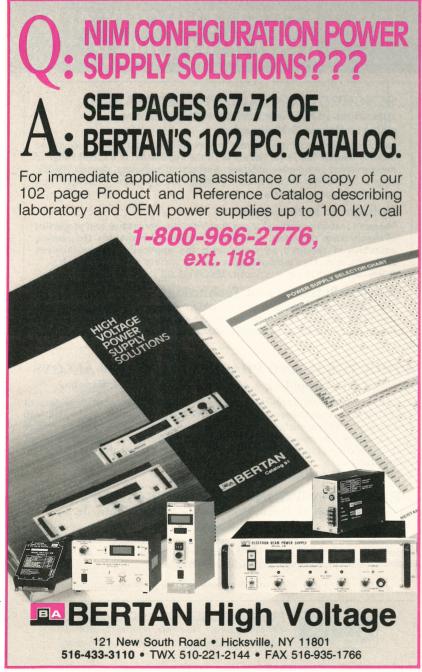
What makes the book unique among texts—as distinct from anthologies of review articles—are the dis-

cussions of "asymptopia" and the characteristic initial-value problem. Asymptopia, the geometry of conformal infinity, provides a rigorous way of discussing the "far field" that, for example, enables one to define mass loss by gravitational waves using the asymptotic four-momentum introduced by Hermann Bondi. Stewart describes tools such as spin-weighted spherical harmonics in a unified notation, avoiding the confusions that arise in the research literature.

The characteristic initial-value problem and methods for solving it are the ultimate theme of this text. In the characterstic initial-value problem the field equations for general relativity decompose in a rather subtle way, and the author's work. together with that of Helmut Friedrich on the conformal vacuum field equations, provide the most advanced framework available for solving the problem. The last point reached in this discussion is the relation of the possible caustics of gravitational waves with Vladimir I. Arnold's classification of singularities, which is nicely illustrated in this book.

One can always find minor quibbles with any text. For example, I think a clearer link between the book's definitions of hyperbolic equations and the ones familiar to many from elementary courses would have been useful. Also, the many problems and exercises, some extremely difficult, could have been accompanied by sketch solutions or suitable references to the literature. But dwelling on such minutiae would give a misleadingly negative tone to my review. This is a fine and very useful book, which I strongly recommend to all interested in the subject.

MALCOLM MACCALLUM Queen Mary and Westfield College London


NEW BOOKS

Acoustics

Active Control of Sound. P. A. Nelson, S. J. Elliott. Academic, San Diego, Calif., 1992. 432 pp. $$129.00\ hc$ ISBN 0-12-515425-9

Biophysics and Medical Physics

Advances in Biomolecular Simulations. AIP Conference Proceedings 239. Proc. Conf., Obernai, France, 1991. R. Lavery, J.-L. Rivail, J. Smith, eds. AIP, New York, 1991. 375 pp. \$85.00 (\$68.00, AIP members) hc ISBN 0-88318-940-2

