WE HEAR THAT

AMERICAN GEOPHYSICAL UNION HONORS NIER, SIBECK AND DEAN

At its meeting in Montreal in May, the American Geophysical Union presented awards to several individuals in recognition of their contributions to geophysics.

AGU's highest honor, the William Bowie Medal, went to Alfred O.C. Nier of the University of Minnesota. The medal is awarded annually to an individual who has made outstanding contributions to fundamental geophysics and embodies AGU's motto, "unselfish cooperation in research." While still a graduate student Nier became interested in using mass spectrometers to study abundances of isotopes and to detect rare naturally occurring isotopes. He discovered potassium-40; later, with L. Thomas Aldrich, he demonstrated that argon-40 is a decay product of potassium-40, a result that led to the potassiumargon method of measuring geological age. Many mass spectrometers are direct descendants of instruments Nier built in the 1940s and 1950s, and his development of miniaturized spectrometers expanded near and deep space research, including studies of the atmosphere and surface of Mars. He is currently studying helium and neon concentrations in particles of extraterrestrial dust collected in the stratosphere and from deep ocean sediments.

Nier earned a PhD in physics from the University of Minnesota in 1936 and then was a National Research Council fellow at Harvard University for two years. In 1938 he joined the physics faculty of the University of Minnesota, where he has remained except for a brief stint with the Kellex Corp in New York during World War II. Nier is currently the Regents' Professor of Physics emeritus at Minnesota.

David G. Sibeck of the John Hopkins University Applied Physics Laboratory received the James B. Macelwane Medal, presented to individuals who are 35 years or younger. Sibeck was cited for his work on the interaction between the solar wind and

Alfred O. C. Nier

Earth's magnetosphere. In 1989 he proposed that the magnetic variations in many satellite and ground-based observations are caused by wavy motion of the magnetosphere's boundary induced by transient variations in the

solar wind.

Sibeck received a PhD in atmospheric sciences from the University of California, Los Angeles, in 1984. The following year he joined the Applied Physics Laboratory at Johns Hopkins as a postdoctoral research associate, and he became a senior physicist there in 1987.

Cory Dean of *The New York Times* received the Walter Sullivan Award for Excellence in Science Journalism for her article "Army Corps of Engineers Struggles to Alter Mississippi's Fate." The article described the engineering and scientific difficulties associated with trying to control the natural evolution of the Mississippi River delta.

Dean earned a bachelor's degree from Brown University in 1969 and a master's degree from Boston University in 1981. She became deputy editor of science and health news at *The New York Times* in 1989. Prior to that she was the newspaper's assistant director of science news.

IN BRIEF

Philip H. Abelson, the editor of Science magazine from 1962 to 1984, has been selected by the National Academy of Sciences to receive the 1992 Public Welfare Medal. Abelson's citation recognizes "his achievement in building Science magazine into an informative and widely read source of news about science and scientists—and their role in society—as well as one of the world's most respected journals for the publication of original research."

In addition, Sangtae Kim, Wisconsin Distinguished Professor of chemical engineering, fluid mechanics and rheology at the University of Wisconsin, Madison, shared this year's NAS Award for Initiatives in Research for his "refinement of mathematical techniques in low Reynolds number hydrodynamics and for his development of novel computer strategies for

solving complex chemical engineering problems." The NAS Award for Scientific Reviewing was given to Robert T. Watson, program director of the process studies program office in the Earth science and applications division of NASA. He was cited for "leading international reviews of stratospheric ozone research which has served as the basis for industrial and governmental decisions to regulate the atmospheric emissions of chlorofluorocarbons."

The National Science Board selected **Jerome B. Wiesner**, president emeritus of MIT, to receive this year's Vannevar Bush Award. He was cited for "his dedication to the ideals of research in the service of humanity on a worldwide basis."

Caltech's **Shrinivas R. Kulkarni**, a professor of astronomy, was given the

National Science Foundation's 1992 Alan T. Waterman Award in recognition of his work in radioastronomy.

Donald D. Clayton, professor of physics at Clemson University, received the Meteoritical Society's 1991 Leonard Medal. He was cited for his work interpreting the existence of isotopically anomalous matter within meteorites.

The president of the National Academy of Engineering, Robert M. White, shared the \$150 000 1992 Tyler Prize for Environmental Achievement for "his leadership in designing and building the machinery through which society observes and understands global climate change."

OBITUARIES

Francis Marion Pipkin

The death on 5 January 1992 of Francis Marion Pipkin, the Frank B. Baird Professor of Science at Harvard University, after a sudden and brief illness, was a tragic loss for atomic and elementary particle physics.

Pipkin was born in Marianna, Arkansas. He served as an Army private during World War II and was awarded a Bronze Star Medal for his heroic rescue of wounded colleagues while under fire. In 1946 he enrolled at the University of Iowa, where he majored in physics. In 1950 he entered Princeton University for graduate work. There Pipkin carried out experimental research under the supervision of Donald R. Hamilton, much of it jointly with Aaron Lemonick. They used atomic beam methods to study the nuclear moments of short-lived nuclei produced at the cyclotron. Pipkin was appointed a Junior Fellow at Harvard in 1954. In 1957 he was appointed assistant professor of physics.

Doubting the interpretation given in a letter on electron spin resonance in Physical Review, Pipkin took up the subject experimentally. With a student, Jackie W. Culvahouse, he studied the spin and g-value, as well as the nature of the beta-decay matrix elements, of isotopes of arsenic. These radioactive nuclei were created by neutron activation of the stable arsenic donors contained in single crystals of silicon. The technique was to orient these isotopes by microwave saturation of individual hyperfine lines of the electron-spin resonance. They found that nuclear polarization could be produced by driving "forbidden" transitions that corresponded to simultaneous electronic and nuclear flips. The orienting transitions were

detected by the alterations produced in the directional distribution of the emitted gamma rays. The work was one of the first examples of dynamic nuclear orientation.

Pipkin next used the new technique of optical pumping to make precise measurements of the hyperfine structures of the several hydrogen isotopes. With a series of thesis students, he studied the effects of inert buffer gases that led to much narrowed resonances. His studies of radioactive isotopes in crystals continued with the use of the ferromagnetic field in iron, when adiabatically demagnetized to low temperatures, as a polarizing force for dissolved impurities. At the same time, with the construction of the Cambridge Electron Accelerator, Pipkin undertook programs in highenergy "photon" and particle physics. His study of electron-positron pair production at wide angles as a test of quantum electrodynamics at GeV energies was severely delayed by the catastrophic explosion of the hydrogen bubble chamber at the CEA, which put the accelerator out of business for about two years.

Pipkin continued to devote much of his time to projects in high-energy particle physics, as a member of a team at the Cornell Wilson Synchrotron Laboratory, where he helped design, construct and use the CLEO detector, and at Fermilab, where he also served on the program advisory committee for four years. At Harvard he also continued an active program in low-energy atomic physics. One project studied the Lamb shift in several excited states of atomic hydrogen, using separated rf interaction regions on a fast atomic beam to obtain improved resolution. work contributed to a better value of the fine structure constant. Other

Francis M. Pipkin

experiments used high-powered lasers to study electronic properties of molecular hydrogen.

Pipkin taught and inspired more than 60 PhD students and had many postdoctoral collaborators in his 37 years at Harvard. He also served Harvard as associate dean of the faculty of arts and sciences for undergraduate education from 1974 to 1977 and as chairman of the physics department from 1985 to 1988. He was chairman of the division of electron and atomic physics of the American Physical Society in 1975-1976. The several students he left behind, especially those working on his low-energy physics projects, suffered an enormous loss with his untimely death. His friends and colleagues will miss his limitless energy, deep understanding, wisdom and generosity in giving his time and energy to matters of institutional importance, as well as his always wise advice and deep personal friendship.

> ROBERT V. POUND Harvard University Cambridge, Massachusetts

Gerald Burns

Gerald Burns, a member of the research staff of IBM for 34 years, died of cancer on 1 October 1991. He was 58 years old.

Gerry was educated at Rensselaer Polytechnic Institute, where he received his BS in 1954, and at Columbia University, where he received his MS in 1957 and PhD in 1962, both in physics. He joined IBM in 1957 while still a graduate student and worked at the Poughkeepsie Research Laboratory and the Watson Laboratories in New York City before moving to the Yorktown Heights location in 1961. In his PhD thesis work he utilized nuclear and electron-spin resonance to study polarizabilities and antishielding factors of atoms in gases and solids. His published calculations of antishielding and contracted wave functions from that work are cited even now.

In 1961 Gerry began work on the photoluminescence of insulators and III–V semiconductors. This led him into a collaborative investigation of semiconductor lasers. He was a member of the group that first observed stimulated emission in GaAs and that made the first injection laser at Yorktown Heights in 1962.

Earlier, Gerry had been one of the first to use nuclear quadrupole resonance to study crystal fields in ferroelectric crystals. In 1964 he returned to this work, and in 1966, as a result of