my friends." Co-opted or not, he treats them well, while entertaining and enlightening the reader in equal measure.

W. Peter Trower Virginia Polytechnic Institute and State University

Conversations on the Dark Secrets of Physics

Edward Teller (with Wendy Teller and Wilson Talley) Plenum, New York, 1991. 247 pp. \$23.95 hc ISBN 0-306-43772-4

This book belongs to the genre of testament, the exposition of a world-view shaped by a lifetime of distinguished contributions to science. It is also intended to serve as a popular exposition of the core ideas of physics. Here the two goals prove to be incompatible, however, for Edward Teller's personal vision is not one that is readily grasped by anyone whose ear is not attuned to the subtle harmonies of mathematics.

For Teller, the essence of physics is the quest for unity, which he regards as a synonym for simplicity, as appears to be the case in Hungarian, his native language. He tends to find his unities on a rather formal level and shows a flair for epitomizing them in simple aphorisms. For example, he sees the crisis in classical physics that gave rise to the quantum theory as a matter of "too few degrees of freedom" in molecules, in atoms and in the vacuum. Josiah Willard Gibbs recognized this defect for diatomic molecules, and James Jeans for the blackbody cavity, but it takes a considerable measure of insight to find it in Niels Bohr's desperate ad hoc stabilization of the nuclear atom.

Somewhat less felicitous perhaps is Teller's characterization of the essence of relativity, which is simply that time t and distance r are not invariant, while the combination $c^2t^2-r^2$ is, and we are left with nothing more than a simple extension of the Pythagorean theorem. Though on a formal level this is incontestable, it is unlikely to convey to the reader the magnitude of the shift in thinking about space and time that this revelation entailed. It is hard to imagine Hermann Minkowski in 1908 without Albert Einstein in 1905.

As a popular work, this book is hampered to some extent by the author's expository style, which tends to favor proclamation over persuasion. Teller seems to be aware of this tendency and tries to temper it by stepping off his exalted podium in occasional humorous asides of a distinctly Central European tone, as when he writes, "In the case of money the law is more apt to recognize the invisible flow than in the case of electrical energy."

As a further and rather unusual leavening agent, witty footnotes have been provided by Teller's daughter Wendy, a computer scientist, and by Wilson Talley, an applied physicist. These often turn into brief dialogues with the author. Many focus on Teller's personal idiosyncracies and his background as a theoretical physicist and a Hungarian. Some help to reassure the reader that he or she is not alone in failing to follow Teller's turns of argument, some of which would challenge a professional physicist, especially the argument that traces the link between Faraday's lines of force and Maxwell's equations.

Teller clearly feels more at home with the cool analytic structures of Gibbs or Werner Heisenberg than with the half-formulated intuitive flashes of Bohr. Nonetheless, he recognizes the historical importance of creative muddle. Thus in the story of gravity he dismisses Galileo as an able propagandist but not a terribly original thinker and opines that Newton, for all his analytic depth, only did what someone else would have done sooner more likely than later. But in his eyes "the man who really made the difference was Kepler," a judgment that I heartily endorse. Even after a lapse of nearly four centuries, the discovery of the ellipses hidden in Tycho Brahe's unmatchably precise but unavoidably two-dimensional data still seems almost miraculous.

Still, like many physicists, Teller can be a bit careless with history. Thus he lists Plato, one of the ancient world's more committed adherents to the atomic hypothesis, among its doubters and cites William Gladstone rather than Robert Peel as the target of Faraday's celebrated riposte on the practicality of his dynamo, "One day, sir, you will tax it." Also in this section, Teller attaches the term "dynamo" to an electric motor. And while it may be natural to imagine that Hans Christian Oersted "noticed with amazement" the response of a compass needle to an electric current, in actuality the experiment was undertaken in a passionate conviction that this would be the result. Finally, Teller's assertion that Newton "guessed that force would be proportional to acceleration" misses the mark both historically and conceptually.

Edward Teller is of course best

known to the public, and even to the generation of physicists educated since World War II, as the tireless and single-minded champion of the technological arms race. Whether one finds that role admirable or reprehensible, it will assuredly define Teller's place in history. This slim volume, which barely mentions that dimension of its author's career, is unlikely to do much to alter that perception.

ROBERT MARCH University of Wisconsin, Madison

Spin Glasses

K. H. Fischer and J. A. Hertz Cambridge U. P., New York, 1991. 408 pp. \$80.00 hc ISBN 0-521-34296-1

For more than a decade spin glasses occupied a central place in both condensed-matter physics and statistical mechanics, with dozens of conferences and colloquiums devoted to the subject and at its peak in the first half of the 1980s fueling more than 400 papers per year. The study of spin glasses also inspired much of the subsequent work on neural networks, optimization theory and related fields encompassed by the phrase "the science of complexity." But what are spin glasses, why are they so fascinating and where does the field go from here?

A spin glass is a magnetic system that exhibits a phase transition to a low-temperature state that has no magnetic long-range order. The required ingredients are randomness and "frustration," meaning that competing ferromagnetic and antiferromagnetic interactions dictate that no spin state simultaneously minimizes all the terms in the Hamiltonian. This characteristic is responsible for much of the richness of spin-glass behavior: Just determining the ground state is a nontrivial problem in optimization theory. In addition the large number of low-lying, metastable states leads to very slow relaxation-the "glassy" behavior from which spin glasses take their name.

Much of the theoretical effort in spin glasses has aimed at a complete understanding of the Sherrington-Kirkpatrick model, whose infinite-range interactions render it soluble in principle, leading to a mean-field theory equivalent to the Weiss theory of ferromagnetism or the van der Waals theory of fluids. The spin-glass mean-field theory, however, is extremely rich, yielding "ergodicity breaking" unrelated to a symmetry of the Hamiltonian and an infinite number of ordered phases organized in a

hierarchical structure. It is the insights gained from this mean-field theory that have proved so useful in a new "statistical" approach to more general problems in optimization theory (such as the traveling salesman problem) and in the theory of neural networks and other complex systems.

In their excellent and timely book Konrad Fischer and John Hertz, both of whom have played major roles in the development of the theory, have done a considerable service to the condensed-matter community by giving us a very readable and comprehensive account of the key theoretical concepts and an informed discussion of some important experimental results. A major part of the book is of course devoted to the mean-field theory in its many guises, culminating in Giorgio Parisi's celebrated solution in which the hierarchical structure of the phase space is coded in a hierarchically organized order-parameter matrix (illustrated on the front cover of the book). One welcome feature of the book is the authors' gradual approach to the more difficult parts of the theory through a sequence of physically motivated approximations.

An important unresolved question in spin-glass theory is the extent to which the mean-field theory correctly describes the ordered phase when the interactions are of finite range (or are effectively finite, as in laboratory spin glass). It is nice to see a complete and clearly presented exposition of the rival phenomenological scaling (or droplet) theory based on plausible assumptions about the nature of the large-scale, low-lying excitations from the ground state. Only now are experiments that can confront this issue being performed. This book is also excellent background reading for researchers interested in other glassy phases and general problems in complexity theory. An example of considerable current interest is the "vortexglass" phase of type-II superconductors, which shares much of the conceptual framework of spin glasses.

Spin Glasses is intended both as a comprehensive survey for experts who have worked in a limited subfield and as an introduction for those from other areas of condensed-matter physics. It serves the former group admirably. For the latter group, those with a good grounding in statistical mechanics and a familiarity with phase transitions at least at the level of Landau theory will find that the book provides a superb introduction to this fascinating field.

ALAN BRAY University of Manchester, England

NEW BOOKS

Acoustics

Acoustics: Waves and Oscillations. S. N. Sen. Wiley, New York, 1990. 234 pp. \$27.95 hc ISBN 0-470-21364-7

Fundamentals of Ocean Acoustics. Second edition. Springer Series on Wave Phenomena. L. M. Brekhovskikh, Yu. P. Lysanov. Springer-Verlag, New York, 1991 [1982]. 270 pp. \$45.00 pb ISBN 0-387-52976-4. Monograph

Underwater Electroacoustic Transducers. D. Stansfield. Bath U. P., Bath, England, 1991. 413 pp. £35.00 hc ISBN 0-86197-082-9

Astronomy and Astrophysics

Beams and Jets in Astrophysics. Cambridge Astrophysics Series 19. P. A. Hughes, ed. Cambridge U. P., New York, 1991. 582 pp. \$75.00 hc ISBN 0-521-34025-X. Compilation

CCD Astronomy: Construction and Use of an Astronomical CCD Camera. C. Buil. Willmann-Bell, Richmond, Virginia, 1991. 316 pp. \$24.95 hc ISBN 0-943396-29-8

Databases and On-Line Data in Astronomy. M. A. Albrecht, D. Egret, eds. Kluwer, Boston, 1991. 273 pp. \$120.00 hc ISBN 0-79234-1247-3

Extreme Ultraviolet Astronomy. R. F. Malina, S. Bowyer, eds. Pergamon, New York, 1991. 520 pp. \$95.00 hc ISBN 0-08-037302-X. Compilation

High Energy Gamma-Ray Astronomy. AIP Conference Proceedings 220. Proc. Conf., Ann Arbor, Mich., Oct. 1990. J. Matthews, ed. AIP, New York, 1991. 346 pp. \$85.00 hc ISBN 0-88318-812-0

Introduction to Astronomical Image Processing. R. Berry. Willman-Bell, Richmond, Virginia, 1991. 96 pp. \$29.95 pb ISBN 0-943396-32-8. Includes floppy disk

Light Pollution, Radio Interference, and Space Debris. Astronomical Society of the Pacific Conference Series 17. Proc. Conf., Madrid, 1989. D. L. Crawford, ed. ASP, San Francisco, 1991. 324 pp. \$32.00 hc ISBN 0-937797-36-8

New Windows to the Universe, Vols. 1–2. Proc. Mtg., La Laguna, Tenerife, July 1989. F. Sanchez, M. Vazquez, eds. Cambridge U. P., New York, 1990. 476 pp. \$105.00 hc ISBN 0-521-40140-2

Physics of Classical Novae. Lecture Notes in Physics 369. Proc. Colloq., Madrid, June 1989. A. Cassatella, R. Viotti, eds. Springer-Verlag, New York, 1990. \$59.00 hc ISBN 0-387-53500-4

P.O.E.T.S. Catalogue of F, G and K Main Sequence Stars Within 100 Light Years. A. J. Westerback. Sarama Editions, Racine, Wisc., 1991. 75 pp. \$16.00 pb ISBN 0-9617354-1-4 Third Reference Catalogue of Bright Galaxies, Vols. I-III. G. deVaucouleurs, A. deVaucouleurs, H. G. Corwin, R. J. Buta, G. Paturel, P. Fouqué. Springer-Verlag, New York, 1991. Vol. I. 602 pp. \$69.00 hc ISBN 0-387-97549-7; Vol. II. 720 pp. \$79.00 hc ISBN 0-387-97550-0; Vol. III. 720 pp. \$79.00 hc ISBN 0-387-97551-9

Tools of Radio Astronomy. K. Rohlfs. Springer-Verlag, New York, 1990. 319 pp. \$39.00 pb ISBN 0-387-52744-3

Venus Aeronomy. C. T. Russell. Kluwer, Boston, 1991. 490 pp. \$198.00 hc ISBN 0-7923-1091-8. Reprint

Biophysics and Medical Physics

Conformations and Forces in Protein Folding. B. T. Nall, K. A. Dill, eds. AAAS, Washington, D. C., 1991. 222 pp. \$34.95 pb ISBN 0-87168-394-9. Compilation

Glycogen Phosphorylase b: Description of the Protein Structure. K. R. Acharya, D. I. Stuart, K. M. Varvill, L. N. Johnson. World Scientific, Teaneck, N. J., 1991. 124 pp. \$38.00 hc ISBN 981-02-0540-6

Information in the Brain: A Molecular Perspective. I. B. Black. MIT P., Cambridge, Mass., 1991. 218 pp. \$30.00 hc ISBN 0-262-02321-0

The Living Cell in Four Dimensions. AIP Conference Proceedings 226. 47th Proc. Conf., Gif sur Yvette, France, 1990. AIP, New York, 1991. 590 pp. \$105.00 hc ISBN 0-88318-794-9

Long-Range Electron Transfer in Biology. Structure and Bonding 75. Springer-Verlag, New York, 1991. 230 pp. \$98.00 hc ISBN 0-387-53260-9. Compilation

Molecular Evolution on Rugged Landscapes: Proteins, RNA and the Immune System. Santa Fe Institute Studies in the Sciences of Complexity 9. Proc. Wksp., Santa Fe, N. M., March 1989. A. S. Perelson, S. A. Kauffman, eds. Addison-Wesley, Redwood City, Calif., 1991. 309 pp. \$45.25 hc ISBN 0-201-52149-0; \$25.75 pb ISBN 0-201-52150-4

NMR in Medicine and Biology: Structure Determination, Tomography, In Vivo Spectroscopy. Physics in Life Sciences. K. H. Hausser, H. R. Kalbitzer. Springer-Verlag, New York, 1991. 217 pp. \$69.00 hc ISBN 0-387-53195-5

Chaos and Nonlinear Systems

Bifurcation and Chaos: Analysis, Algorithms, Applications. International Series of Numerical Mathematics 97. R. Seydel, F. W. Schneider, T. Küpper, H. Troger, eds. Springer-Verlag, New York, 1991. 388 pp. \$109.00 hc ISBN 0-8176-2593-3. Compilation

Chaos and Information Processing: A Heuristic Outline. J. S. Nicolis. World