QUANTUM CHAOS AND
THE BOW-STERN ENIGMA

Daniel Kleppner

Leo Kadanoff’s essay on complexity
and chaos in this column four years
ago (March 1987, page 7) was, at least
for me, a revelation, for new fields of
physics don’t pop up every day. Since
then, research on complexity has
mushroomed. Kadanoff recently de-
scribed a few of the advances (March,
page 9), and just last month Philip
Anderson recounted how the science
of complexity originated and sketched
some of the new subjects it has
spawned (July, page 9). But if com-
plexity has mushroomed, chaos has
exploded. Conferences on chaos pro-
liferate, new journals abound, and
nonlinear dynamics has elbowed its
way into the mechanics curriculum.
A book on chaos has made the New
York Times best-seller list, and hardly
a week passes when that arbiter of
scientific good taste, Physical Review
Letters, does not present us with a few
papers on the subject.

Some of chaos’s newfound popular-
ity is obviously aesthetic. The phan-
tasmagoria of the Mandelbrot set,
with its fractal visions of solar erup-
tions and sea horses, is truly spectac-
ular. (Actually, the connection be-

" tween fractals and chaos is not so easy
to understand, but hardly anything
about chaos is easy to understand.)
Some of the popularity must also be
due to the exotic vocabulary of chaos.
The very word “chaos” quivers with
connotations, evoking the state of the
universe before God switched on the
lights, the state of society today, the
state of most American families while
the children are coming of age, and
the erratic motions of those kinetic
toys that one can see in expensive gift
shops or in lectures on nonlinear
dynamics. Can one think of more
seductive terms than “strange attrac-
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‘Unusual sensitivity to initial conditions.” Both of these
trajectories represent particles moving in the xz plane under the
potential V= A/r+ B(x2 + y2). The initial directions of the two
trajectories differ by only 1 microradian. The z axis is vertical.
(Courtesy of R. V. Jensen, Wesleyan University.)

tor” or “the butterfly effect”?

To this list I would add “quantum
chaos,” a phrase that juxtaposes two
of the glitzier words of modern phys-
ics, but two that do not get on
happily together. The problem is
that Schrodinger’s equation is linear
and its solutions are fundamentally
periodic or quasiperiodic. Quantum
mechanics leaves no room for irregu-
lar motion. Chaos is a strictly classi-
cal concept; “quantum chaos” is an
oxymoron.

Oxymoron or not, the subject has
attracted lots of interest. Usually the
phrase is interpreted to mean the
study of those particular features of
the quantum mechanical behavior of
a system that occur when the corre-
sponding classical motion is chaotic.
Michael V. Berry’s 1987 Bakerian
Lecture provides a fascinating over-
view of quantum chaos.! Berry de-
scribed the subject as “the study of
semiclassical, but nonclassical, behav-
ior characteristic of systems whose
classical motions exhibit chaos,” and
suggested that it be called “quantum
chaology.” Unfortunately, his title

has not taken hold—physicists appear
to shy away from words that end in
“ology,” like “astrology” and “phre-
nology” (though not, of course, “cos-
mology”). Experts are never confused
by the term “quantum chaos,” though
they often go out of their way to
refrain from using it. I attended one
workshop in which the words were
scrupulously avoided by every speak-
er but one, who summoned the cour-
age to refer to “the phrase that all of
us think but none of us dares utter.”

Chaos is frequently defined as mo-
tion that displays “‘extreme sensitiv-
ity to initial conditions.” Because
there is no way to specify initial
conditions for a many-particle sys-
tem, much less map the individual
trajectories, chaos is not a property of
complex systems but of simple sys-
tems. The figure above illustrates a
case of extreme sensitivity to initial
conditions. Shown are two trajector-
ies of a particle moving in the xz
plane under the potential V=
A/r + B(x? + y%), where A and B are
constants. The left-hand trajectory
returns to the origin: The particle’s
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motion reverses, and the particle
traverses the same path again and
again—clearly a case of periodic mo-
tion. In the right-hand plot the ini-
tial angle of the trajectory is changed
by about 1 part in 106. The particle
misses the origin and takes off on an
erratic path, apparently never to
retrace itself.

The behavior in the drawing is of
more than formal interest because
the potential describes a real system:
a hydrogen atom in a magnetic field.
(Spin, relativity and other such effects
are neglected, for they play no impor-
tant role here.) I have a personal
interest in this problem, often called
the diamagnetic hydrogen problem,
because my students and I happened
to be studying the system experimen-
tally when we were told that at
certain combinations of fields and
energies the classical motion under-
goes a textbook transition to chaos.
Being naive, we had no idea what
might happen to the spectrum: The
quantum analog of extreme sensitiv-
ity to initial conditions could be a
nightmare; the spectrum might be
unstable, never to be reproduced be-
cause we could never exactly repro-
duce the experimental conditions, for
instance the magnetic field.

Much of the picture we should have
expected is well known. As the clas-
sical motion becomes chaotic, the
energy levels repel one another and
the spectrum undergoes a transfor-
mation whose signature is in its
fluctuations. The distribution of sep-
arations between energy levels be-
comes the Wigner distribution, p(s) =
(7/2)s exp( — m/4s%), where s is the
separation between adjacent levels in
units of the average separation.

An impressive body of theory on
quantum chaos has been developed,
and there is a healthy assortment
of spectral data that all display
the ubiquitous Wigner distribution.
However, experiments in which one
studies flesh-and-blood quantum sys-
tems and manipulates them through-
out various regimes of classical mo-
tion are about as scarce as slide rules
at a computer convention. Martin
Gutzwiller’s recent book Chaos in
Classical and Quantum Mechanics
(Springer-Verlag, New York, 1990), a
fascinating study of modern mechan-
ics, has over 800 references, but only
about a dozen of these are to experi-
ments on quantum chaos. It is not
that the theorists are ignoring the
experiments—on the contrary, any-
one carrying out such an experiment
will find an appreciative audience
of theorists.

Being among the few experiment-
ers in a field dominated by theorists
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gives one license to ask naive ques-
tions, somewhat as a foreigner can be
excused for behavior that would oth-
erwise be a gaffe. I propose two
questions. The first is this: Since
quantum mechanics is more funda-
mental than classical mechanics,
shouldn’t the aim of quantum chaos
be to predict classical behavior from
quantum theory?

In some cases classical motion has
been deduced from quantum behav-
ior. For example, Karl Welge and
his colleagues studied the photoab-
sorption spectrum of the diamagnetic
hydrogen atom, or, more specifically,
the Fourier transform of the spec-
trum.? They found peaks that should
correspond to the periods of various
periodic orbits, as predicted by the
work of Gutzwiller, William P. Rein-
hardt and others. Knowing the peri-
ods, Welge and his collaborators
went on to discover a group of orbits
whose existence was previously un-
suspected. (One of these is shown in
the figure.) It is not a trivial matter
to find such orbits, since they are
generally unstable. Our own data
suggest the existence of orbits with
extremely long periods, though these
have yet to be found. Long-period
unstable orbits are notoriously diffi-
cult to find classically, though quan-
tum mechanics can give some insight
into classical motion.

The second question is, Does the
first question matter? Is it essential
for classical physics to have a solid
underpinning of quantum mechan-
ics? In some cases the answer is
certainly yes. Classical statistical me-
chanics, for example, had fundamen-
tal problems that could only be re-
solved by quantum theory. In nonlin-
ear dynamics and chaos, however,
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there are so many conceptual troubles
at the classical level that it is not
evident that one can look to quantum
mechanics for insight.

As Gutzwiller’s book explains, clas—
sical mechanics is by no means well
understood: It is a far more compli-
cated and subtle subject than most
physicists realize. For example, no
way has yet been devised to predict
whether a given system will exhibit
orderly or chaotic motion. It would be
pleasing to derive chaos from quan-
tum mechanics, though this seems
like an unrealistic agenda as long as
we cannot even predict chaos from
classical mechanics. So choosing the
direction in which to proceed to con-
nect quantum mechanics and chaos
presents something of a dilemma.

This dilemma is an example of what
I call the bow-stern enigma. The
term has its origin in a canal voyage I
made with some friends. Upon arriv-
ing at our boat we were confronted
with an embarrassing but apparent-
ly fundamental problem: deciding
which end of the boat was the bow and
which the stern. The problem, how-
ever, turned out to be merely superfi-
cial. The countryside was so delight-
ful that it made little difference which
way we traveled: The scenery was
interesting in either direction.
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