
QUANTUM CHAOS AND 
THE BOW-STERN ENIGMA 
Daniel Kleppner 

Leo Kadanoff's essay on complexity 
and chaos in this column four years 
ago (March 1987, page 7) was, at least 
for me, a revelation, for new fields of 
physics don't pop up every day. Since 
then, research on complexity has 
mushroomed. Kadanoff recently de­
scribed a few of the advances (March, 
page 9), and just last month Philip 
Anderson recounted how the science 
of complexity originated and sketched 
some of the new subjects it has 
spawned (July, page 9). But if com­
plexity has mushroomed, chaos has 
exploded. Conferences on chaos pro­
liferate, new journals abound, and 
nonlinear dynamics has elbowed its 
way into the mechanics curriculum. 
A book on chaos has made the New 
York Times best-seller list, and hardly 
a week passes when that arbiter of 
scientific good taste, Physical Review 
Letters, does not present us with a few 
papers on the subject. 

Some of chaos's newfound popular­
ity is obviously aesthetic. The phan­
tasmagoria of the Mandelbrot set, 
with its fractal visions of solar erup­
tions and sea horses, is truly spectac­
ular. (Actually, the connection be-

. tween fractals and chaos is not so easy 
to understand, but hardly anything 
about chaos is easy to understand.) 
Some of the popularity must also be 
due to the exotic vocabulary of chaos. 
The very word "chaos" quivers with 
connotations, evoking the state of the 
universe before God switched on the 
lights, the state of society today, the 
state of most American families while 
the children are coming of age, and 
the erratic motions of those kinetic 
toys that one can see in expensive gift 
shops or in lectures on nonlinear 
dynamics. Can one think of more 
seductive terms than "strange attrac-
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'Unusual sensitivity to initial conditions.' Both of these 
trajectories represent particles moving in the xz plane under the 
potential V =AI r + B(x2 + y2). The initial directions of the two 
trajectories differ by only 1 microradian. The z axis is vertical. 
(Courtesy of R. V. Jensen, Wesleyan University.) 

tor" or "the butterfly effect"? 
To this list I would add "quantum 

chaos," a phrase that juxtaposes two 
of the glitzier words of modern phys­
ics, but two that do not get on 
happily together. The problem is 
that Schriidinger's equation is linear 
and its solutions are fundamentally 
periodic or quasiperiodic. Quantum 
mechanics leaves no room for irregu­
lar motion. Chaos is a strictly classi­
cal concept; "quantum chaos" is an 
oxymoron. 

Oxymoron or not, the subject has 
attracted lots of interest. Usually the 
phrase is interpreted to mean the 
study of those particular features of 
the quantum mechanical behavior of 
a system that occur when the corre­
sponding classical motion is chaotic. 
Michael V. Berry's 1987 Bakerian 
Lecture provides a fascinating over­
view of quantum chaos.1 Berry de­
scribed the subject as "the study of 
semiclassical, but nonclassical, behav­
ior characteristic of systems whose 
classical motions exhibit chaos," and 
suggested that it be called "quantum 
chaology." Unfortunately, his title 

has not taken hold-physicists appear 
to shy away from words that end in 
"ology," like "astrology" and "phre­
nology" (though not, of course, "cos­
mology"). Experts are never confused 
by the term "quantum chaos," though 
they often go out of their way to 
refrain from using it. I attended one 
workshop in which the words were 
scrupulously avoided by every speak­
er but one, who summoned the cour­
age to refer to "the phrase that all of 
us think but none of us dares utter." 

Chaos is frequently defined as mo­
tion that displays "extreme sensitiv­
ity to initial conditions." Because 
there is no way to specify initial 
conditions for a many-particle sys­
tem, much less map the individual 
trajectories, chaos is not a property of 
complex systems but of simple sys­
tems. The figure above illustrates a 
case of extreme sensitivity to initial 
conditions. Shown are two trajector­
ies of a particle moving in the xz 
plane under the potential V = 
A i r + B(x2 + y2), where A and Bare 
constants. The left-hand trajectory 
returns to the origin: The particle's 
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motion reverses, and the particle 
traverses the same path again and 
again-clearly a case of periodic mo­
tion. In the right-hand plot the ini­
tial angle of the trajectory is changed 
by about 1 part in 106

• The particle 
misses the origin and takes off on an 
erratic path, apparently never to 
retrace itself. 

The behavior in the drawing is of 
more than formal interest because 
the potential describes a real system: 
a hydrogen atom in a magnetic field . 
(Spin, relativity and other such effects 
are neglected, for they play no impor­
tant role here.) I have a personal 
interest in this problem, often called 
the diamagnetic hydrogen problem, 
because my students and I happened 
to be studying the system experimen­
tally when we were told that at 
certain combinations of fields and 
energies the classical motion under­
goes a textbook transition to chaos. 
Being naive, we had no idea what 
might happen to the spectrum: The 
quantum analog of extreme sensitiv­
ity to initial conditions could be a 
nightmare; the spectrum might be 
unstable, never to be reproduced be­
cause we could never exactly repro­
duce the experimental conditions, for 
instance the magnetic field . 

Much of the picture we should have 
expected is well known. As the clas­
sical motion becomes chaotic, the 
energy levels repel one another and 
the spectrum undergoes a transfor­
mation whose signature is in its 
fluctuations. The distribution of sep­
arations between energy levels be­
comes the Wigner distribution, p(s) = 
(1r/2)s exp( - 1rl 4s2), where s is the 
separation between adjacent levels in 
units of the average separation. 

An impressive body of theory on 
quantum chaos has been developed, 
and there is a healthy assortment 
of spectral data that all display 
the ubiquitous Wigner distribution. 
However, experiments in which one 
studies flesh-and-blood quantum sys­
tems and manipulates them through­
out various regimes of classical mo­
tion are about as scarce as slide rules 
at a computer convention. Martin 
Gutzwiller's recent book Chaos in 
Classical and Quantum Mechanics 
(Springer-Verlag, New York, 1990), a 
fascinating study of modern mechan­
ics, has over 800 references, but only 
about a dozen of these are to experi­
ments on quantum chaos. It is not 
that the theorists are ignoring the 
experiments--on the contrary, any­
one carrying out such an experiment 
will find an appreciative audience 
of theorists. 

Being among the few experiment­
ers in a field dominated by theorists 
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gives one license to ask naive ques­
tions, somewhat as a foreigner can be 
excused for behavior that would oth­
erwise be a gaffe. I propose two 
questions. The first is this: Since 
quantum mechanics is more funda­
mental than classical mechanics, 
shouldn't the aim of quantum chaos 
be to predict classical behavior from 
quantum theory? 

In some cases classical motion has 
been deduced from quantum behav­
ior. For example, Karl Welge and 
his colleagues studied the photoab­
sorption spectrum of the diamagnetic 
hydrogen atom, or, more specifically, 
the Fourier transform of the spec­
trum. 2 They found peaks that should 
correspond to the periods of various 
periodic orbits, as predicted by the 
work of Gutzwiller, William P . Rein­
hardt and others. Knowing the peri­
ods, Welge and his collaborators 
went on to discover a group of orbits 
whose existence was previously un­
suspected. (One of these is shown in 
the figure.) It is not a trivial matter 
to find such orbits, since they are 
generally unstable. Our own data 
suggest the existence of orbits with 
extremely long periods, though these 
have yet to be found. Long-period 
unstable orbits are notoriously diffi­
cult to find classically, though quan­
tum mechanics can give some insight 
into classical motion. 

The second question is, Does the 
first question matter? Is it essential 
for classical physics to have a solid 
underpinning of quantum mechan­
ics? In some cases the answer is 
certainly yes. Classical statistical me­
chanics, for example, had fundamen­
tal problems that could only be re­
solved by quantum theory. In nonlin­
ear dynamics and chaos, however, 
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there are so many conceptual troubles 
at the classical level that it is not 
evident that one can look to quantum 
mechanics for insight. 

As Gutzwiller's book explains, clas­
sical mechanics is by no means well 
understood: It is a far more compli­
cated and subtle subject than most 
physicists realize. For example, no 
way has yet been devised to predict 
whether a given system will exhibit 
orderly or chaotic motion. It would be 
pleasing to derive chaos from quan­
tum mechanics, though this seems 
like an unrealistic agenda as long as 
we cannot even predict chaos from 
classical mechanics. So choosing the 
direction in which to proceed to con­
nect quantum mechanics and chaos 
presents something of a dilemma. 

This dilemma is an example of what 
I call the bow-stern enigma. The 
term has its origin in a canal voyage I 
made with some friends. Upon arriv­
ing at our boat we were confronted 
with an embarrassing but apparent­
ly fundamental problem: deciding 
which end of the boat was the bow and 
which the stern. The problem, how­
ever, turned out to be merely superfi­
cial. The countryside was so delight­
ful that it made little difference which 
way we traveled: The scenery was 
interesting in either direction. 
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