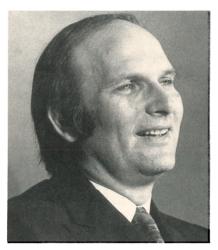
tion against women—which is a problem in itself, the survey report concluded.

Apparently women also experience greater difficulties obtaining research funding. While 48% of men said they had a guaranteed source of funding, only 31% of women said they did. And 28% of women described their sources of research funding as "soft," compared with 20% of men. Despite these disparities, women and men submit papers at about the same rate to the two major AAS journals, the Astrophysical Journal and the Astronomical Journal.

A summary of the AAS Membership Survey and the raw data can be obtained by contacting AAS, 2000 Florida Avenue NW, Suite 300, Washington DC 20009. —Jean Kumagai


## SCHRIEFFER ACCEPTS UNIVERSITY-WIDE POSITION IN FLORIDA

J. Robert Schrieffer, best known for his part in developing the Bardeen–Cooper–Schrieffer theory of superconductivity, has accepted an appointment as University Professor at the University of Florida and Florida State University. In this position, which is the first of its kind in the Florida system, Schrieffer will be affiliated with all nine campuses of the university but will be primarily associated with FSU in Tallahassee and with the University of Florida, Gainesville.

Schrieffer's office will be located at the newly established national magnet lab at Florida State (see PHYSICS TODAY, January 1991, page 53). Schrieffer says he will be "on assignment" at the magnet lab.

In the competition that led to Florida's obtaining the magnet lab, a decisive factor was the level of commitment of the Florida state government and the state university to the lab. Among other things, the state and the university promised to make approximately 34 faculty appointments and 20 visiting appointments in association with the lab, and in due course it came to be understood that four of the faculty positions would be in condensed matter theory.

As part of the agreement that brings Schrieffer to Florida, four additional positions in condensed matter theory are being created at the magnet lab. So, including Schrieffer's University Professorship, the group in condensed matter theory at the lab will have a total of nine members. Not counting Schrieffer, four of the new positions are to be associated



J. Robert Schrieffer

with FSU and four with Gainesville. It is anticipated that half will be senior-level, tenured appointments, and the other half junior, tenure-track appointments.

A search for people to fill the positions in condensed matter theory is being conducted by a committee that includes four representatives from FSU, four from Gainesville and two from Los Alamos National Laboratory. LANL is responsible for overseeing the magnet lab in association with Florida State and the University of Florida, under contract to the National Science Foundation.

Hans-Jorg Schneider-Muntau, currently chief engineer at the Grenoble magnet lab—a joint operation of Germany's Max Planck Institute for Solid State Research and France's CNRSjoins the magnet lab in Florida on 1 October. John Miller, head of the superconductivity group at Lawrence Livermore National Lab, will move to Florida later this year. Jack E. Crow, the FSU solid-state physicist who is believed to be on the verge of being named director of the magnet lab, expresses confidence that some other distinguished scholars will accept positions at the lab soon. Schrieffer is due to arrive at the magnet lab on 1 January next year.

Schrieffer leaves a professorship at the University of California, Santa Barbara—having served there as director of the NSF-supported Institute for Theoretical Physics—and a parttime position at Los Alamos as director of the advanced studies program in high-temperature superconductivity theory. (The Los Alamos program is to be dissolved as an independent effort and will be incorporated into a broader program devoted to heavyfermion strongly correlated materials, Schrieffer says.) Schrieffer also leaves a regular consultancy with IBM Almaden.

## KECK FOUNDATION FUNDS DUPLICATE OF KECK TELESCOPE

On 26 April the W. M. Keck Foundation announced its grant of \$74.6 million toward the construction of a second 10-meter, segmented-mirror telescope on Mauna Kea in Hawaii. which will be a clone of the telescope currently nearing completion there. When it was decided six years ago to build the first Keck Telescope using segmented-mirror technology developed by Jerry Nelson at Lawrence Berkeley Laboratory, a large measure of technical risk was involved. The technology had never been demonstrated at a true prototype scale, and there were powerful arguments in favor of alternative technologies (see PHYSICS TODAY, February 1985, page 71). The decision by Keck to fund a clone represents an expression of confidence in the telescope nearing completion, obviously, as well as a big leap forward in viewing potential.

Operated as an optical or infrared interferometer, the twin telescopes will provide a resolution equivalent to that of a telescope with a 85-m mirror, according to Edward C. Stone, the director of the Jet Propulsion Laboratory and a vice president of Caltech. Stone, who serves as chairman of the board of the California Association for Research in Astronomy, says that the instrument will have the power to identify the presence of a warm Jupiter-sized body in orbit around any of the nearest 100 stars. (CARA is a partnership established by Caltech and the University of California to build and operate the Keck telescope, which originated as a University of California project and only turned into a joint partnership when Caltech came into the game in late 1985 with backing from the Keck Foundation.)

William R. Frazer, senior vice president for academic affairs for the University of California, remarked casually not long after the first Keck telescope was launched that he hoped he would have the good luck to be in some other job by the time the telescope was completed, in case it turned out not to work. At it happens, the initial telescope was demonstrated successfully with nine mirrors at the end of last year, and the complete set of 36 parabolic segments is to be installed by early next year. Nelson has exuded confidence all along: Six years ago he told PHYSICS TODAY that building the telescope would be "just like paving your bathroom floor." He says now that polishing the mirrors, not making the instrument's novel