
continued from page 15

problems in the management and distribution of academic research funds. Just three possible problems of this sort that have occurred to me are a changing mix of the type and cost of research programs, marked inequalities in the distribution of funding among principal investigators, and diminished local flexibility in how research funds are spent. Such problems may be just as important as constraints on total funding in causing the present malaise among many academic researchers.

Even without understanding these facts, I am apprehensive of arguments for more funding that are based on inward and self-serving views. In the eyes of many Congressmen, it will

appear unseemly of us to base our pleas for more money on the poor state of our morale. There are too many homeless, returning veterans, AIDS victims and others waiting in that line, most with more appeal to our elected representatives than we have. We need to focus on the fundamental reasons why our society needs to invest in academic science, namely the tremendous economic, social and cultural benefits it brings. In short, we need to concentrate on what we can do for others, not what they should do for us.

ROLAND W. SCHMITT
Rensselaer Polytechnic Institute
3/91 Troy, New York

Lederman replies: Roland Schmitt takes issue with the APS survey reported on by Roman Czujko, Daniel Kleppner and Stuart A. Rice and with the AAAS inquiry over the question of choosing a strategy toward a common goal: improving the health of US science. His point of view is shared by a surprising number of good people who have commented on the AAAS report. Whereas letters from the bench scientists are in general supportive, the comments from the Washington-wise, a group we desper-

ately want on our side, tend to emphasize the danger of self-serving actions. In our report we tried to stress that what should be of concern to policy-makers and the public is the health of scientific research rather than the joy of scientists. The riposte that scientists are better off than the homeless may win a debating point but misses the crucial significance of what is going on in the laboratories. It is like responding to the fainting canary in the mine with "Who cares about canaries!"

Both the APS survey and the AAAS inquiry sound an early warning to the nation. If we are turning off young physics investigators, if the most successful researchers are in despair in full view of their graduate students, if (as my mail indicates) the same trauma exists in fields from anthropology to zoology, then someone must pay attention. Schmitt's strategy is to minimize these data in favor of stressing what wonders science can perform. Nevertheless our analysis makes us the messenger with the bad news: The costs of doing research have far outpaced the budget increases. How can we make this point if we do not use the morale of scientists as an important indicator? The criticism we have received, that scientists can always use more money, is superficial; the depth of the malaise is new and should be clear to anyone who studies the data or visits the laboratories. Ignore this early warning, we insist, and the nation runs the risk that US science will go the way of education and much of our once vaunted industry.

I can only hope that this lively debate will eventually result in a common strategy toward the noble end of restoring American science. For this we surely need the help of Schmitt and his Washington-wise friends.

LEON M. LEDERMAN University of Chicago Chicago, Illinois

4/91

Cutting 'Big vs Little Science' Down to Size

Can we lay to rest the question of "big science versus little science" as a nonissue? True, this is a comfortable topic. It is like a joke whose punchline can be expected from the beginning and is guaranteed not to surprise the listener. But it is a code phrase for a concept that often bears little relation to how science is actually done.

The scales of "big" and "little" are not clearly defined in peoples' minds, except possibly relative to where they spent their early professional years. (For some scientists this is "a certain nostalgia for virtue," to quote Arthur Schnitzler in *La Ronde*.¹) If pressed, many people would say that "little science" is done by a single faculty member together with one or two graduate students and possibly a postdoc, and with a small equipment budget; "large science" is a creaking, overadministered enterprise of unspecified size in which there is no room for individual initiative. Current folk beliefs can be summarized as follows:

▷ Little science is "good." The best science is done on this scale. It is cost effective. Students get the best training, on a one-on-one basis.

▷ Big science is "bad." No good science is done on this scale. It is a waste of money. Students get poor training.

Now consider the realities of how science is done. The optimum size of a group varies greatly. It depends on the problem studied and the nature of each scientist involved. Some scientists choose to work largely alone, with only a loose professional coupling to others in their field. Others work in small local teams on a common range of problems, with each contributing significantly. And finally, others simply prefer to work in larger groups that span departments or that make up institutes or laboratories in their own right. The larger groups require more internal administration, yet each scientist still is responsible for his or her own successes (or failures). The spectrum of group sizes is best determined by the spectrum of the most significant problems. Artificial limits on size will deny the exploration of key research problems.2

Even in the largest group, each student should always have a clearly defined mentor. Student training is critically dependent on the skill of the mentor, and on giving the student the correct level of independence and responsibility. This is true regardless of group size. If anything (everything else being equal), students can often get better training in the excitement and variety of a large group. After all, students get at least half of what they learn from other, more senior students.

"The best science is always done as little science" is far from a universal truth. Consider two examples:

▷ Hans Dehmelt, working on the traditional small scale, won the Nobel Prize for his precision measurements of the electron.

▷ Carlo Rubbia and Simon van der Meer, working on the largest scale yet, won the Nobel Prize for demon-

LETTERS

strating the existence of the W and Z particles.

Which is "more important"? Both are triumphs of the human intellect.

There is an often-unrecognized diversity within what one normally considers "big science." At one extreme are large groups focused on one problem (or even on a single experiment—vide Rubbia and van der Meer). At another extreme are large facilities shared by a number of small-to-medium-sized groups. Such facilities have revolutionized fields traditionally thought of as small science. (One has but to think of the effect of the Glomar Challenger on geology, or the succession of ever larger telescopes on astronomy.) And vet another form of "big science" is the grouping by common consent into a large and diverse enterprise (such as the Joint Institute for Laboratory Astrophysics or the Institute for Theoretical Physics) that by the richness of its internal interactions often sets the pace and standard of quality for a whole field.

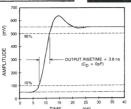
These large experiments, facilities or groups are the ones able to open new windows on the unknown and in so doing to lead to the unexpected discoveries that change the course of science. (This has gone on as long as there has been science.3) Opening such windows increasingly requires ever larger enterprises. "Big science" is thus simply the next logical step in any field of science. Once made and absorbed it becomes tomorrow's "little science" and is no longer remarked on. ("Little science" is time dependent. Small groups today have more computing power than Los Alamos did when it worked out the first hydrogen bombs.)

The best science is done by allowing scientists to decide what is important and how to do it, not by our telling them. Let me argue for the best science independent of size: It would be a shame if physics were to be decided by formula and not by intellectual challenge.

References

- 1. A. Schnitzler, Plays and Stories, Continuum, New York (1982).
- 2. J. Palca, Science 251, 19 (1991).
- 3. M. Harwit, Cosmic Discovery, MIT P., Cambridge, Mass. (1984).

ROLF M. SINCLAIR Chevy Chase, Maryland


Charge-Density Wave Compound Comment

In his December Search and Discovery story (page 17) Anil Khurana

AMP

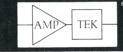
CHARGE SENSITIVE PREAMPLIFIER

A250

RUN SILENT - RUN FAST!!! A NEW STATE-OF-THE-ART EXTERNAL FET

FET CAN BE COOLED

NOISE: < 100e RMS (Room Temp.) < 20e RMS (Cooled FET) POWER: 19 mW typical SLEW RATE: > 475 V/ µs GAIN-BANDWIDTH IT > 1.5 GHZ

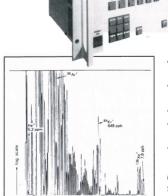


If you are using: Solid State Detectors, Proportional counters, Photodiodes, PM tubes, CEMS or MCPs and want the best performance, try an AMPTEK CHARGE SENSITIVE PREAMPLIFIER

Send for Complete Catalog

Low noise (less than 100 electrons RMS) Low power (5 milliwatts) Small size (Hybrids) High Reliability Radiation hardened (as high as 107 Rads) One year warranty

Aerospace Portable Instrumentation Nuclear Plant Monitoring **Imaging** Research Experiments Medical and Nuclear Electronics Electro-Optical Systems and others.


AMPTEK INC.

6 DE ANGELO DRIVE, BEDFORD, MA 01730 U.S.A. (617) 275-2242

AUSTRALIA: Austeknis PTY Ltd, Kingswood 2763533; AUSTRIA: Item Beratung, Vienna 975958; BELGIUM: Landre Intechmij, Aartselaar 8875382; BRAZIL: Domex Comercio Exterior Ltda, Sao Jose Dos Campos-SP 234235; DENMARK: Eltime, Slangerup 780303; ENGLAND: Teknis Ltd., Crowthorne, Berkshire 780022; FRANCE: Leversan, Rousset, 42290019; WEST GERMANY: Teknis & Co. Munchen, 7900736; HONG KONG: Idealand Electronics Ltd, Kowloon, 7443516-9; INDIA: Bakubhai Aribalai Bombay 6323303; ISRAEL: Giveon Agencies Itd, Tel Aviv, 5612171; ITALY: C.I.E.R. 74433 16-9, INDIA. Bakutilat Antibala Bolinay 622305, INDIAL. (INTERPRETATION) REPORT 85814; IAPAN: Jepico, Tokyo 3480623; KOREA: Hongwood International, Seoul, 5551010; NETHERLANDS: Hollinda B.V. The Hague 512801; NORWAY: Ingenior Harald Benestad A/S, Lierskogen 850295; PAKISTAN: Fabricon, Karachi 412266; PHILIPPINES: QV Philippines Co. Ltd Metro Manila, 8193365.

Circle number 76 on Reader Service Card

Accurate measurement of all your gases all the time

Spectrum of air sample

A complete line of quadrupole mass analyzers to improve vield and quality in any vacuum or gas process.

- Long-term stability of ±0.02%
- Measures from percent to ppb
- Mass ranges to 64, 100, 200, 300, 512, 1000 and 2000 amu
- · Multiplex up to 8 quad analyzers with one controller
- Computer controlled for stand-alone operation
- · Powerful, easy-to-use software packages adapt to your process
- · Automatic calibration and measurement shortens analysis time and enhances precision

Call for details on gas analysis components that deliver accurate measurement of all your gases all the time.

BALZERS

8 Sagamore Park Road • Hudson, NH 03051 TEL (603) 889-6888 • FAX (603) 889-8573

The Sensible Solution

Circle Reader No. 77 to receive literature

Circle Reader No. 78 to have sales representative contact you