
INFORMATION IS PHYSICAL 
There ore no unavoidable energy consumption requirements 

·per step in a computer. Related analysis has provided insights 
into the measurement process and the communications 
channel, and has prompted speculations about the nature of 
physical lows. 

Rolf Landauer 

Thermodynamics arose in the 19th century out of the 
attempt to understand the performance limits of steam 
engines in a way that would anticipate all further 
inventions. Claude Shannon, 1 after World War II, ana­
lyzed the limits of the communications channel. It is no 
surprise, then, that shortly after the emergence of modern 
digital computing, similar questions appeared in that 
field . It was not hard to associate a logic gate with a 
degree of freedom, then to associate kT with that, and 
presume that this energy has to be dissipated at every step. 
Similarly, it seemed obvious to many that the uncertainty 
principle, t:..Et::.t ~ fz, could be used to calculate a required 
minimal energy involvement, and therefore energy loss, 
for very short t::.t. 

A long journey led to the understanding that these 
back-of-the-envelope estimates are not really unavoidable 
limits. In the process, we also learned to take a new look 
at the minimum energy requirements of the communica­
tions channel and the measurement process. 

Computation is inevitably done with real physical 
degrees of freedom, obeying the laws of physics, and using 
parts available in our actual physical universe. How does 
that restrict the process? The interface of physics and 
computation, viewed from a very fundamental level, has 
given rise not only to this question but a lso to a number of 
other subjects, which will not be explored here. For 
example, cellular a utomata (spatially periodic arrays of 
interacting logic elements) are used to model a variety of 
physical systems.2 A good many investigators have 
studied measures of complexity, attempting to quantify 
that intuitive notion. Much of this enterprise is motivated 
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by the hope that the physical scientist can find an easy 
route to profound insights concerning the origin of life and 
the progress of evolution. Concern with complexity 
replaces, to some extent, an earlier concern with self­
organization. There is also a view, originally presented by 
the great computer pioneer Konrad Zuse3 and later 
elaborated by Edward Fredkin,4 that the world itself is a 
computer. The particle passing by you is really a bit, or 
group of bits, moving a long a set of interlinked logic units, 
much like a cellular a utomata machine. These inter­
linked logic units operate, of course, on a very fine scale of 
time and space. Quantum cryptography5 and neural 
networks are two further fields; we need not list them all. 
I mention these subjects only to make it clear that they are 
not our concern. 

What is a computer? It is basically an array of bits­
D's and l's-with machinery that maps one configuration 
of such bits into another configuration. A universal 
computer can simulate any other computer and can 
execute any specifiable set of successive transformations 
on bit patterns. The Turing machine is the archetype for 
fundamentally oriented computer discussions. (The box 
on page 26 explains how a Turing machine operates). The 
Turing machine preceded the modern electronic comput­
er, and for practical purposes is too slow and too hard to 
program, but it has a remarkable advantage. The actual 
devices in the "head," doing all the work, can connect to an 
unlimited array of information, without the need for 
unlimited registers or unlimited memory-addressing ma­
chinery. At any one step of a Turing machine computa­
tion, only a very limited number of bits in close functional 
and spatial relationship, are subject to change. The 
Turing machine embodies, in a striking manner, a 
requisite of a reasonable computer: The designer of t he 
machine needs to understand only the function carried out 
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Must information be 
discarded in computation, 

communication and the 
measurement process? This 

question has physical 
importance because discarding 

a bit of information requ ires 
energy dissipation of order kT. 

Figure 1 

by the head, and not the whole computational trajectory. 
The designer need not anticipate all the possible computa­
tions carried out by the machinery; that is what makes a 
computer more than the mechanical equivalent of looking 
things up in a table. 

Reversible computation 
Normally, in computation, we throw away information 
with great frequency (see figure 1). We do that, for 
example, when we erase an entry in memory or use a 
typical elementary logic operation such as "and" or "or," 
with two inputs and one output. Figure 2 illustrates, 
somewhat symbolically, the process in which differing 
initial states are mapped into the same final state and 
information is discarded. Figure 2 shows the compression 
in phase space of the degrees of freedom bearing the 
information. Total phase space cannot be compressed; the 
compression of the computer's information-bearing de­
grees of freedom requires an expansion of other degrees of 
freedom . That corresponds to an increase in their 
entropy. Thus throwing away information requires dissi­
pation. Erasing a bit that was initially equally likely to be 
in a 0 or 1 state turns out, from the elementary formula !1Q 
= Tt1S, to need an energy dissipation of kTln 2. In 

ordinary computers erasure of information occurs at 
almost every step. 

Erasure of information, however, is not really essen­
tial, and computation can be carried out as shown 
schematically in figure 3a. The letters A0 , B0 , C0 ... re­
present different possible initial states, that is, different 
initial programs or different initial data. Each initial 
state is the beginning of a succession of states. Each step 
along the way results from a 1:1 mapping and allows 
identification of the preceding state. A merging of 
different tracks as shown in figure 3b corresponds to 
erasure and need not be invoked. Computation that 
preserves information at every step along the way (and not 
just by trivially storing the initial data) is called reversible 
computation, and was first described correctly and com­
pletely as a physical process by Charles Bennett.6 Com­
puters can easily be designed so that the energy at each of 
the successive steps in figure 3a is the same. We could, for 
example, use spin up and spin down, charge on the left 
electrode or the right, or superconducting current flowing 
one way or the other to denote 0 and 1. 
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Now, figure 3a is still symbolic; we have not yet 
described the actual machinery carrying out the logic 
operation that takes us from one state to the next. Let us 
assume, however, that the "motion" along the tracks of 
figure 3a is subject not to static friction but to viscous 
frictional forces proportional to the velocity of motion, as 
in electricity and hydrodynamics. Let us also assume that 
noise, at least thermal equilibrium noise resulting from 
the ambient temperature, is present. Then motion of the 
system along the chain of figure 3a is akin to an electron 
moving along a one-dimensional lattice. Noise will cause 
diffusive motion, but a very small forward force will serve 
to give the system a predictable average forward velocity. 
With a very small applied forward force we will encounter 
a very small dissipation, much less than kTper step, if de­
sired. Remember, also, that one step of the whole 
computer, shown as a step along the chains of figure 3a, 
can consist of many logic operations done simultaneously, 
not just the operation of a single gate. Reversible 
computation is not computation using small components. 
The use of reversible computation is only aimed at 
minimizing energy consumption. 

Reversible computation does not allow us to use most 
of the typical logic functions. All the commonly used 
multiple input gates, which have only a single output, 
throw away information. If we need to use these we have 
to embed them in more complex functions that preserve 
information, and thereafter save the extra outputs, which 
we call history or, perhaps more honestly, garbage, as 
symbolized in figure 1. We arrive at the end of the 
computation with the desired output, as in any computer, 
in designated output registers. Additionally we have a 
good deal of history that could not be discarded. We can 
copy the output registers with arbitrarily little dissipation 
if we do so slowly enough, as an example will later show. 
But we cannot erase the unneeded history; that would void 
the precautions we took to save it. After copying the 
intended output, however, we can reverse the computation 
and unwind it, returning to the initial state. Just as we 
were able to push the system forward, slowly, along the 
chains of figure 3, we can push it backward. I will not take 
the space here to discuss the possible alternatives, and 
their respective energy costs, once we return to the initial 
state. But, at worst, if we simply erase the initial program 
we incur an energy cost proportional to its size and not pro-



portional to the possibly much larger number of steps in 
the program. While I will not discuss input-output 
operations in detail, there is a central point: Information 
transfer from one apparatus to another need not be more 
dissipative than information transfer within the reversi­
ble computer. We can, of course, invoke much more 
dissipative operations, for example, those using physiolog­
ical machinery such as eyes, ears and brains. But those 
are hardly optimal processes. 

Time-modulated potentials 
What is the act~al machinery that can take us from one 
state in figure 3a to the next? There are a number of pro­
posals, but I will not list all of them. Some of the proposals 
come in two versions: either with viscous friction or in a 
form presumed to be frictionless . One proposal uses the 
Fredkin gate, in which balls are pushed through pipes and, 
in turn, control switches.7 Bennett has described two 
reversible Turing machines.8 One is based on genetic code 
machinery; the other involves machinery without springs, 
in which movable hard pieces can block the motion of 
other parts. I will describe none of these and will only dis­
cuss some aspects of an additional classical proposal using 
particles in time-varying potentials. Later we will consid­
er quantum mechanical computers. 

Figure 4 illustrates a classical potential whose time 
variation is externally imposed. A heavily damped well is 
taken from a narrow monostable state through a fiat 
bifurcation stage (or second-order transition) to a deeply 
bistable state, and then back again. In the fiat state, 
before going on to the deeply bistable state, the particle in 
the well is very susceptible to external influences. These 
biasing forces are provided by coupling to particles in 
other wells that are already in their deeply bistable state, 
and which subsequently will be restored to the monostable 
state. Later, the particle in the well of figure 4 will control 
the motion of further particles. This potential-well 
scheme is adapted from independent inventions by John 
von Neumann and Eiichi Goto.9 Their proposals invoked 
microwave excitation of nonlinear circuits, and demon­
strated that all the logic in a computer can be executed 
with such a scheme. A further variation on the theme is 
due to Konstantin Likharev, 10 who used Josephson­
junction circuits, and who first pointed out that an 
appropriate choice of logic functions would allow reversi­
ble computation. 

In such schemes it is possible that as a result of noise, 
the particle will be left unintentionally in the wrong well, 
on the uphill side of the applied biasing force coming from 
other wells. It can be shown that if we use strong enough 
forces, and if we modulate the wells sufficiently slowly 
that the particle's probability distribution is never far 
from the Boltzmann distribution, the probability of error 
can be made as small as we wish. Nevertheless, for a given 
design and a given speed, there will be a residual, 
nonvanishing error probability. This is typical of all 
reversible computer proposals. They assume, somewhere, 
the equivalent of our large forces, for example, by invoking 
hard and impenetrable parts8 Thus reversible computa­
tion can be made as immune to error as we wish, 
preventing jumping between the tracks of figure 3a. 

In some schemes an alternative to minimizing errors 
is to recognize and correct errors. For example, we can 
restore the computation to the intended track if particles 
deviate gradually from intended trajectories or if we carry 
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Phase space of a computer, sketched 
symbolicall y showing information loss in the 
transition from A or B to C. Figure 2 

out the computation in three simultaneous systems and 
intermittently compare results. Throwing away the error 
is a dissipative event. It leads to an energy cost per step 
that is proportional to the error rate, but not directly 
dependent on the computational velocity. 

The interaction of a time-dependent potential with a 
particle at a fixed position is not a source of dissipation. 
Dissipation occurs only through the motion of the particle 
against frictional forces. Thus slow motion of the particle 
insures minimal dissipation. 

. Figure 5 illustrates a particularly simple use of this 
time-modulated potential-well scheme. In figure 5a we 
start with information in the left-hand well, and in figure 
5b it has been transferred to the right-hand well. In figure 
5c the left-hand well has been restored to a monostable 
state. The transition from figures 5a to 5b represents the 
production of a copy and shows that this can be done with 
as little dissipation as desired, a fact we have already 
mentioned. The transfer of information in the step 
leading from figures 5a to 5b is essentially part of a 
measurement cycle: The right-hand well has acquired 
information about the left-hand well. We can see that it is 
not the information transfer step that requires dissipation 
in measurement. 

The transition from figures 5b to 5c is called 
uncopying. It is the inverse of copying. We start with two 
copies of a bit, guaranteed to be identical. We end up with 
only one copy of the bit; the other bit is now in a previously 
designated standardized state. Uncopying is not equiva­
lent to erasure and, just like copying, can be done with a 
dissipation per step proportional to speed. When we 
reverse a computer after completion of a program and 
return to the initial state, uncopying can be used to clear 
out the initial program with minimal dissipation, if a 
second copy of that program is available. 

The transfer of a bit, shown in the total sequence in 
figure 5, can be iterated. The bit can be passed on to 
further wells. This is then a communications channel, 
and we have shown that a bit can be moved along a chain 
with a dissipation proportional to its speed of motion, 
avoiding any minimum energy requirement of order kT. 

The time-modulated potential-well scheme was ori­
ginally conceived as one in which the time variation was 
externally imposed. Thus the process was clocked, as real 
computers are. We can conceive of the machinery which 
controls the time variation of the potential as diffusive, 
and itself subject to a very small bias force . Thus, the 
potential-well scheme can also become one of the schemes 
illustrated by figure 3a. 
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The Turing Machine 
O riginall y proposed as a device for discuss ing logical 
executab ili ty, the Turing machine is also suitable fo r a 
discussion of physica l executability. The Turi ng machine 
consists, in part, of an infinite tape as shown in the figure 
below. One of several designated states occurs at each 
tape position representing the information on the tape. A 
binary choice of states, 0 or 1, is adequate, though a 
larger "a lphabet" may be more convenient. The tape is 
in itiall y in a standardized state, say 0, except for a limited 
number of positions that are prepared as a program and 
determine what the mac hine does subsequently. The 
machine also inc ludes the " head," which does the work . 
The head has an internal memory that serves to define its 
state. The head reads the tape information at its current 
location and this, together with the internal memory 
state, determines the subsequent action of the head. The 
subsequent action consists of 
I> setting the information state at the tape element in 
question, that is, either leaving it alone or changing it 
I> resetting the internal memory state of the head 
I> moving the head one position to the right or to the left. 
Then the whole cycle starts over again . 
In modern te rminology we can thin k of the head as .a 
small processor, or logic block, whose in puts are its 
existing internal memory state and the bit at the current 
tape position. The three actions highlighted above are 
the outputs. If the head is equipped with a suitabl y 
chosen logic function, the Turing mac hine can, with this 
one head, execute all computer programs or equivalent­
ly, all executable algo ri thms. If the machi ne is given a 
terminat ing program (for example, to calulate 1r to 25 
places, in contrast to a continu ing calculation of 1r) it will 
come to a halt upon completion of the program. The 
Turing mac hine embodies the key ingredient of the 
stored-program computer, whose development followed 
some years later: Data and instructions are presented 
and handled in the same format, in the same storage 
space, and thus inst ructions can be modified by the 
program. 

Reversible computation has been described and ela­
borated by a good many authors with differing viewpoints. 
(See references 11 and 12 for a sta rt to the citation trail.) 
Nevertheless, objections continue to appear. On one side 
there are pessimists who believe tha t more energy has to 
be expended. 13 On the other side there are optimists who 
believe tha t even if information is discarded, we can still 
minimize dissipation to any desired extent. 14 

Measurement and communication 
The energy requirements of the measurement process 
have been of interest for over a century as a result of 
concern with Maxwell's demon. Maxwell pointed out that 
if we knew the locations and motions of individual 
molecules, we could get them to do work, even though they 
come from a thermal equilibrium state. Leo Szilard, 15 in a 
pioneering analysis in 1929, pointed to the need for 
concern with the bit (or bits) that provides information 
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about the molecule and controls the subsequent behavior 
of the apparatus extracting the energy. The prevailing 
wisdom, until recently, was that the transfer of informa­
tion from an object to be measured (in this case the 
molecule) to a meter or register requires energy dissipa­
tion. Leon Brillouin and Dennis Gabor16 found different 
dissipative ways of measuring the location of a molecule. 
They invoked a photon that was used up in the process of 
"seeing" the molecule, and which had to be of high enough 
energy to be distinguishable from blackbody radiation. 
Neither they nor the authors of many later papers asked 
the obvious question: How do we know that this is the 
least dissipative information transfer process? The discus­
sion associated with figure 5 indicates that information 
transfer can be done with arbitrarily little dissipation. 
Today, as a result of the work by Bennett, 17 we know that 
this also holds for the molecular measurements needed to 
operate Maxwell's demon. The dissipation required to 
save the second law and to prevent us from making 
molecules in thermal equilibrium do work comes not from 
information transfer to the meter or control apparatus but 
from the subsequent resetting of that apparatus. An early 
version of this viewpoint was given by Oliver Penrose,18 

and a recent elaboration by Wojciech Zurek.19 A charm­
ing and scholarly review of the demon's long history and 
the many viewpoints it has generated is given in reference 
20. 

A somewhat similar history has beset the question, 
how much energy is needed to move · a bit along a 
communications link? Shannon1 showed that in a linear 
transmission line with thermal equilibrium noise at least 
kTln 2 per bit is required, assuming that the energy in the 
message has to be dissipated at the receiving end.1 

Unfortunately, later authors ascribed a universal applica­
bility to Shannon's conclusion, which he had presented as 
arising from an analysis of a special case. Information 
does not have to be sent by waves; we can use the postal 
service to mail a letter or a floppy disk. Information need 
not use linear t ransmission media in which noise added to 
the signal can easily cause it to be confused with another 
signal. As we have seen in connection with figures 4 and 5, 
information can be handled in nonlinear systems with 
local states of stability, where small noise signa ls intro­
duce no error at all. By iterating the process shown in fig­
ure 5, information can be passed along a chain of time­
modulated wells with a dissipation proportional to the 
speed of transmission. Elsewhere I have analyzed this and 
several other communications links that demonstrate this 
possibility. 12 

Quantum models 
Our discussion up to now has focused on dissipative 
classical systems with noise. We will skip classical 
dissipationless models and turn directly to quantum 
mechanical Hamiltonian systems. The discussion of such 
systems commenced with the work of Paul Benioff21 and 
has been elaborated by him and others.22 These theories 
specify Hamiltonians that cause an interacting set of bits 
(which can be considered to be spins up and down instead 
ofO's and 1's) to evolve in time, just as we would want them 
to do in a computer. The Hamiltonians are Hermitian 
operators, but the theories do not tell us how to assemble 
fundamental pa rticles, or parts in the stockroom, to build 
a computer. They are not patent disclosures. Further­
more, the Hamiltonian includes only the information-



bearing degrees of freedom. The parts holding these bits 
in place, and their lattice vibrations, are not included: The 
descriptions assume that there is no noise and no friction. 

We first consider Hamiltonians that include an 
explicit externally imposed time dependence. Some inves­
tigators consider such a time dependence a blemish, but as 
long as we do not really explain how to achieve the invoked 
Hamiltonian, the time dependence does not-in my 
view-constitute a serious additional fault. The time­
dependent scheme described here is based on Benioff's 
work but is simplified for the purposes of this account, 
partly on the basis of suggestions by Charles Bennett. 

Consider the symmetrical bistable potential well 
shown in figure 6a. The particle is initially in the left­
hand well. This represents a linear superposition of the 
symmetric ground state and the antisymmetric first 
excited state, chosen so as to interfere destructively in the 
right-hand well (as shown in figure 6b), at the initial time. 
Now if the energy splitting between these two states is t::.E, 
then at a time M = JTfz / t::.E later, the states will interfere 
destructively in the left-hand well, and the particle will 
have tunneled to the right-hand well (as shown in figure 
6c). (Actually the wavefunction in the initial well will not 
vanish exactly; the particle is not really transferred 
completely. We can avoid this difficulty by using an 
abstract two-state system or a combination of spin and 
projection operators, as invoked by Benioff.21 But wave­
functions in potential wells are easier to draw and more 
suggestive.) When tunneling to the right-hand well of 
figure 6c is completed, a wall is erected at the top of the 
barrier, as shown in figure 6d. This will prevent the 
particle from returning to its original well during the next 
time step. The particle is now coupled to a third well, as 
shown in figure 6e, where an impenetrable wall, shown by 
a dashed line, has just been removed. The particle can 
then tunnel into this third well. Note, incidentally, that 
we have presented the basis of a quantum mechanical 
communications link, akin to the classical one mentioned 
in connection with figure 5. 

The excitation energy t:.E above the ground state can 
be very small in a computation if we are willing to accept 
slow information transfer. The initial left-hand well in 
figure 6a can be considered to represent a computational 
state of the computer. The computer (rather than a 
particle) is then transferred to the state represented by 
the right-hand well in figure 6c. This represents the next 
state of the computer, except perhaps for a special clocking 
bit that labels it as an interim state. Then in the motion to 
the third state, at the right in figure 6e, we reset this 
special status bit and arrive at the full next state of the 
computer, ready to restart the whole two-phase cycle. 

Our discussion focuses on the execution of logic in a 
computer, but I pause here for a comment about storage 
density. Figure 6 demonstrates that we can store informa­
tion in a bistable well with arbitrarily little energy above 
the ground state, if the barrier between the two valleys is 
made sufficiently impenetrable (this decreases the gap 
!::.E). That holds whether we use occupation of the left and 
right wells, respectively, for 0 and 1, or use the symmetric 
and antisymmetric states for that purpose. Note that we 
can use very deep and very narrow wells to store 
information. Quantum mechanics imposes no obvious 
limits on the spatial density of storage. 

We can view the time-dependent potentials of figure 6 
as forming "pipes" connecting successive states. We 

B 

c 

of' 
'o 

E 

b 

A 

B 

One-to-one mapping in computation. a: 
The left-hand end of a horizontal chain is the 
initial state. Motion to the right yields forward 
steps through a sequence of states represented 
by successive labeled circles. Different letters 
correspond to different initial states. b: 
When two distinguishable computational 
paths merge into one, information is lost. 
Figure 3 

assume that high barriers prevent lateral tunneling out of 
the pipes to other computational paths, much as we 
invoked barriers between the different tracks of figure 3a. 
The space of computational states will then have a 
structure much like that shown in figure 3a. Figure 3a 
places successive states next to each other; in a space 
where adjacent states differ by only a single bit, the 
"pipes" would have a much more complex structure. 

A quantum mechanical reversible computer, just like 
a classical one, has to be reversed at the end of its 
computation. It can, however, stay in the state represent­
ing the end result for a large number of cycles, to allow 
output operations. Furthermore, the information-bearing 
bits (or spins) are guaranteed to be in either the 0 state or 
the 1 state. They are not in a quantum mechanical 
superposition of these; no "collapse of the wave-function" 
is involved while copying the output. The initial program­
loading operation, however, could benefit from a more 
detailed analysis than has been presented in the existing 
literature. 

A proposal by Richard Feynman23 avoids the need for 
a time-dependent Hamiltonian. Feynman views the 
computation as illustrated in figure 3a and motion along 
the sequence of states as being analogous to motion of an 
electronic wave packet along a periodic lattice. In this 
case it is the initial state, representing a moving packet, 
that assures the direction of the computation, without the 
need for externally imposed time dependence. The 
analogy to motion in a periodic potential immediately 
alerts us to a problem. In one dimensional lattices which 
have some disorder, an incident wave packet suffers 
reflection, and its transmission decreases exponentially 
with the length of the sample. This is known as 
localiza tion. In our computational case, if, for example, 

PHYSICS TODAY MAY 1991 27 



v 
A 

Time-dependent potential well going from 
single minimum at A to a deeply bistable state 
at F, and later returning to A. The curves are 
displaced vertically relative to one another for 
clarity. The variable q gives the position of 
the particle in the well. Figure 4 

the energy of a state depends slightly on the exact bit 
pattern, we can expect similar problems. Thus, dissipa­
tionless and completely coherent quantum computation, 
even if it were feasible, is unlikely to be desirable. The 
problem of localization is avoided by the presence of 
inelastic (dissipative) events that disrupt the coherence of 
the reflections that cause localization. In the case of the 
time-dependent potential of figure 6, the presence of 
imperfections will give us some probability that the state 
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'Copying' and 'uncopying' using particles in 
time-dependent potential wells coupled 
through a spring. In the transition from a to b, 
information in the bis"table well on the left 
determines the state of the one on the right 
(copying) . In the transition from b to c the 
well on the left is brought back to a 
monostable state (uncopying), ready to 
receive new information . Figure 5 
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will stay in its original well. In that case that component 
of the computer's state will move along the computational 
track in the wrong direction. Whether the overall adverse 
consequences of this are as severe as for Feynman's time­
independent case is not yet clear. 

Coherent quantum mechanical computation may be 
unachievable in practice and even may be undesirable. 
Nevertheless these theories demonstrate that the uncer­
tainty principle does not imply an energy dissipation 
requirement per computer step. 

The nature of physical law 
At this point the reader deserves a warning: We are 
entering the genuinely speculative part of this discussion. 
We have seen that neither kT nor the uncertainty 
principle leads to unavoidable minimum energy dissipa­
tion requirements for computation. Are there, then, no 
limits imposed by physics? Undoubtedly there are such 
limits, but we will have to work harder to understand 
them. A deeper question: How large a memory can we 
supply for our computer? Quite likely we are in a finite 
universe. In any case, nature is unlikely to be so 
cooperative as to enable us to bring together an unlimited 
memory. 

The finiteness of our universe, and the resulting 
implication for memory limits, is not the only problem of a 
cosmological nature. Computers are full of degradation 
phenomena. Corrosion, evaporation, diffusion, electromi­
gration and earthquakes cause problems. Alpha particles, 
cosmic rays, spilled coffee, and lightning can also be 
deleterious. Can we offset these problems to any required 
degree by using sufficiently massive parts or by the use of 
such well-known schemes as triple modular redundancy? 
Perhaps, but then we aggravate the problem already 
mentioned: We will run out of parts more quickly if we 
make them more massive or use redundant circuitry. 

In contrast to this physical situation, mathematics 
has taught us to think in terms of an unlimited sequence of 
operations. We have all grown up with the sense of values 
of the mathematician: "Given any c, there exists an N, 
such that . ... " We can calculate 1rto any required number 
of places. But that requires an unlimited memory, 
unlikely to be available in our real physical universe. 
Therefore all of classical continuum mathematics, normal­
ly invoked in our formulation of the laws of physics, is not 
really physically executable. The reader may object. Can 
we not define the real numbers within a formal mathemat­
ical postulate system? Within that system, can we not 
prove that cos28 + sin28 = 1 exactly and not just to a great 
many decimal places? Undoubtedly we can. But physics 
demands more than that; it requires us to go beyond a 
closed formal system and to calculate actual numbers. If 
we cannot distinguish 1T from a terribly close neighbor, 
then all the differential equations that constitute the laws 
of physics are only suggestive; they are not really 
algorithms that allow us to calculate to the advertised 
arbitrary precision. I am proposing that the ultimate 
form of the implementable laws of physics requires only 
operations available (in principle) in our actual universe. 
Whether the inevitable limit on precision is simply a limit 
on the number of bits that can be invoked in physics or is 



Controlled tunneling through a sequence of 
states. Initially, in a, the system is in the left­

hand well, in a superposition of the symmetric 
ground state and the antisymmetric state 
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then cause the particle to tunnel into the third 

well. Figure 6 

more complex and statistical is unclear. But the universe 
was not constructed by my firm or one of its competitors, 
and therefore the more complex, statistical possibility, 
resembling a universal source of noise, seems more likely. 

Others have, in a variety of ways, suggested that space 
and time in the universe are not really described by a 
continuum and that there is some sort of discretization, or 
some limit on the information associated with a limited 
range of space and time. Most of these investigators, 
however, consider that to be a description of the physical 
universe and are still willing to invoke continuum 
mathematics to describe their picture. My suggestion is 
for a more self-consistent formulation: Information han­
dling is limited by the laws of physics and the number of 
parts available in the universe; the laws of physics are, in 
turn, limited by the range of information processing 
available. Among the authors who have made proposals 
that have some relation to the view propounded here, I 
need to single out John Wheeler,24 who has told us, "No 
continuum," and also that the laws of physics were not 
necessarily there at the beginning of the universe. 
Wheeler's suggestion, that the laws of physics are inter­
linked with the evolution of the universe and our 
observation of it, is not equivalent to my proposal, but both 
suggestions deviate from the more prevalent notion that 
the laws of physics are independent of the contents and 
history of the universe. 

Earlier centuries gave us clockwork models of the 
universe. -A similar, but more modern, orientation leads 
to the position of Zuse3 and Fredkin4 that the universe is a 
computer. Without going quite that far, I do suggest that 
there is a strong two-way relationship between physics 
and information handling. 

References 
1. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948); ibid, p. 623. 
2. T. Toffoli, N. Margolus, Cellular Automata Machines, MIT P., 

Cambridge, Mass. (1987). 
3. K. Zuse, Int. J. Theor. Phys. 21, 589 (1982); Rechnender Raum, 

Friedrich Vieweg und Sohn, Braunschweig (1969). 
4. R. Wright, Three Scientists and Their Gods, Times Books, 

New York (1988). 

5. See The Economist, 22 April 1989, p. 81. 
6. C. H. Bennett, IBM J. Res. Dev. 17, 525 (1973). 

7. E. Fredkin, T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982). 
8. C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982). 
9. J. von Neumann, US Patent 2 815 488, filed 28 April1954. E. 

Goto, J. Electr. Commun. Eng., Japan, 38, 770 (1955). 
10. K. K. Likharev, Int. J. Theor. Phys. 21, 311 (1982). K. K. 

Likharev, S. V. Rylov, V. K. Semenov, IEEE Trans. Magn. 
21,947 (1985). 

11. C. H. Bennett, IBM J. Res. Dev. 32, 16 (1988). 
12. R. Landauer, in Selected Topics in Signal Processing, S. Hay­

kin, ed., Prentice-Hall, Englewood Cliffs, N.J. (1989), p. 18. 

b 

d 

e 
~-~ 
:' '' '' '' '' '' ' ' 

·---T--
<~E 

_____ !___ 

~v 
(Printed version has some figures oriented incorrectly.) 

13. E. Biedermann, PHYSICS TODAY November 1990, p. 122. 
14. E. Goto, N. Yoshida, K. F. Loe, W. Hioe, in Proc. 3rd Int. Symp. 

Foundations of Quantum Mechanics, Tokyo 1989, S. Kobaya­
shi, H. Ezawa, Y. Murayama, S. Nomura, eds., Phys. Soc. 
Japan, Tokyo (1990) p. 412. 

15. L. Szilard, Z. Phys. 53 840 (1929); English translation in J. A. 
Wheeler and W. H. Zurek, eds., Quantum Theory and Mea­
surement, Princeton U. P., Princeton 1983, p. 539. 

16. L. Brillouin in Science and Information Theory, Academic 
Press, New York (1956), p. 162. D. Gabor, in Progress in Optics, 
vol. I, E. Wolf, ed. North-Holland, Amsterdam (1961) p. 109. 

17. C. H. Bennett, Sci. Am., November, 1987, p. 108. 
18. 0. Penrose, Foundations ofStatistical Mechanics, Pergamon, 

Oxford (1970). 
19. W. H. Zurek, Nature 341, 119 (1989). See also C. M. Caves, 

W. G. Unruh, W. H. Zurek, Phys. Rev. Lett. 65, 1387 (1990). 
20. H. S. Leff and A. F. Rex, Maxwell's Demon: Entropy, Informa­

tion, Computing, Princeton U. P., Princeton (1990). 
21. P. Benioff, J . Stat. Phys. 22, 563 (1980); ibid. 29, 515 (1982); 

Phys. Rev. Lett. 48, 1581 (1982). 
22. D. Deutsch, Proc. R. Soc. London, Ser. A 425, 73 (1989). P. 

Benioff, in New Techniques and Ideas in Quantum Measure­
ment Theory, Ann. N.Y. Acad. Sci., vol. 480, D. M. Green­
berger, ed., (1986) p. 475; N. Margolus, ibid., p. 487. A. Peres, 
Phys. Rev. A 32, 3266 (1985); W. H. Zurek, Phys. Rev. Lett. 53, 
391 (1984). 

23. R. Feynman, Opt. News 11, 11 (1985); reprinted in Found. 
Phys. 16, 507 (1986). 

24. J . A. Wheeler in Proc. 3rd Int. Symp. Foundations of Quantum 
Mechanics, Tokyo 1989, S. Kobayashi, H. Ezawa, Y. Mur­
ayama, S. Nomura, eds., Phys. Soc. Japan, Tokyo, (1990), p. 
354; IBM J. Res. Dev. 32, 4 (1988). • 

PHYSICS TODAY I-MY 1991 29 




