MATERIALS RESEARCH SOCIETY MEETS IN BOSTON

Nearly 4000 attendees from a variety of science and engineering disciplines will convene at the Marriott and Westin Hotels at Copley Place in Boston for the Materials Research Society's fall meeting, to be held this year from Sunday, 1 December, to

Saturday, 7 December.

The multidisciplinary nature of materials science is reflected in the topics to be covered by the 26 symposiums and 21 short courses, which will touch on aspects of physics, chemistry, biology and engineering. Meeting planners will again offer familiar and popular symposiums such as those on semiconductors, optical materials, ceramics, complex materials and hightemperature superconductors. In addition, several new session titles emphasize emerging fields.

The MRS will hold its first formal symposium devoted to low-temperature GaAs and related materials, expanding on lively discussions that took place at the invitational workshop on the subject held in conjunction with the 1990 spring meeting of the MRS in San Francisco. Resistive layers of GaAs, which are grown by molecular-beam epitaxy on substrates at low temperatures, have a number of possible device and circuit

applications. In a symposium on the shapememory effect, a complicated phenomenon found in certain ceramics, polymers and metallic and intermetallic alloys, speakers will discuss the design, fabrication, applications, structure and properties of shapememory materials. Hierarchically structured materials are the subject of a symposium dedicated to the memory of Donald R. Ulrich. Here speakers will focus on the complex stuctural design of many naturally occurring materials, such as skin, bone and wood. These composites display unique properties at many length scales, from atomic to macroscopic dimensions. A symposium titled "Tissue-Inducing Biomaterials" will feature talks on the design of materials and devices that can guide the repair or regeneration of tissues and organs.

Recent reports that visible luminescence can be obtained at room temperature from highly porous silicon have prompted meeting organizers to schedule for Tuesday evening a special postdeadline symposium on the

subject. Symposium chair Subramanian Iyer hopes that the discussions will help clarify whether light emission from porous silicon is a quantumconfinement or a defect phenomenon. Other talks will concern possible applications of porous silicon, which might include lasers and LEDs that can be readily combined with integrated circuits.

The perennial "Symposium X," to be held each day at lunchtime and billed as a series of authoritative reviews for nonspecialists, features talks on fluorine-based polymers, nanofabrication, interaction of energetic ions with solids, biomaterials, shape-memory alloys, diamond films

Presidential science adviser D. Allan Bromley will deliver the plenary address Monday evening at 6 pm.

The society's highest honor

On Wednesday evening at 6 pm MRS President James B. Roberto will present the Von Hippel Award, the society's highest honor, to Theodore H. Geballe of Stanford University for "a lifelong career of finding novel and important physical phenomena and for his example in carrying out effective multidisciplinary materials research." An experimenter known for his work on semiconductors and superconductors, Geballe has endorsed an integrated approach to materials research.

Geballe's early studies in the 1950s of transport in semiconductors contributed to the understanding of piezoresistance, phonon drag, and electrical, thermal and impurity-hopping conduction. He and Bernd T. Matthias, with Seymour Geller and Ernest Corenzwit, in their work on the A15 class of superconductors, broke the critical-temperature record in 1954 with their discovery of Nb₃Sn, which superconducts at 18 K. His achievements also include the development of layered-transition-metal dichalcogenide superconductors and the demonstration of enormous-criticalfield anisotropy. Geballe's group at Stanford was among the first to produce thin films of the new high- T_c superconductors.

After receiving his BS and PhD in chemistry from the University of California, Berkeley, Geballe joined the staff of AT&T Bell Laboratories in 1952 to pursue studies of semiconduc-

Theodore H. Geballe

tors, superconductivity and the lowtemperature properties of materials. In 1968 he joined the Stanford faculty, where he became chairman of the department of applied physics and director of the Center for Materials Research. Geballe held the Theodore and Sydney Rosenberg Chair in Applied Physics at Stanford from 1978 until 1990, when he became an emeritus professor.

The MRS fall meeting will once again feature an equipment exhibit, organized by the American Institute of Physics. The exhibit, which will display analytical and processing equipment related to the symposium topics, will be open Tuesday from noon to 7 pm, Wednesday from 9:30 am to 5 pm and Thursday from 9:30 am to 2 pm. There will be a reception Tuesday from 5 to 7 pm in the exhibit hall, on the third floor of the Mariott Hotel.

Tuesday through Thursday AIP will operate a job-placement center adjacent to the exhibit hall. Prospective employees can submit one-page resume forms to placement center staff, who will arrange on-site interviews with participating employers. Preregistration begins Sunday at 4 pm in the MRS registration area.

MRS will offer a comprehensive program of short courses to complement symposium topics. Courses will include instruction on the preparation, fabrication and characterization of materials as well as introductions to advanced materials. On-site registration for short courses begins on Sunday, 1 December, at 11:30 am.

Invited Papers

Monday, 2 December

morning

Formation of amorphous semiconductors by ion beams. F. Saris, F. Spaepen Interfacial crystallography and structure. R. C. Pond, A. P. Sutton

Microstructural processes and intrinsic stresses. S. D. Senturia, R. Abermann

Gas-source epitaxial growth and characterization. P. Demeester

Diamond, W. E. Pickett, R. J. Graham, V. S. Vavilov

High-temperature superconductors: Fundamentals. B. Batlogg, A. W. Sleight, J. R. Clem

Optical characterization techniques and integrated sensors and detectors. M. De Graef, M. Saver

Optical waveguide materials: Plenary session. A. M. Glass

Photoinduced phenomena. G. Meltz

Electrical, optical and magnetic properties of organic solid-state materials: Plenary session. A. F. Garito, G. Wegner, D. O. Cowan

Nonlinear optics: Second-order processes. K. D. Singer, R. Lytel, Y. R. Shen

Complex fluids: New architectures. P. Pincus, E. W. Kaler, F. C. MacKintosh Synthesis I: Polymeric precursors for nonoxide ceramics, sol-gel chemistry. D. Seyferth, L. V. Interrante

Cluster chemistry and catalysis. G. A. Somorjai

History and foundations of multiple scattering theory. J. Korringa, B. L. Gyorffy, J. S. Faulkner, O. K. Andersen, H. Winter

afternoon

Ion-beam modified semiconductors: Novel characterizations. C. A. Volkert

Growth kinetics. J. W. Cahn, M. Enomoto, J. E. Taylor

Interfacial defects and reactions. R. Bonnet, J. M. Gibson

Stresses and deformation processes. F. Spaepen

Implantation and annealing. K. S. Jones, J. P. de Souza, J. H. Marsh

Diamond. R. W. Pryor, J. Narayan

High-temperature superconductor materials: Properties and synthesis I. D. C. Johnston, M. Takano

Electrodes and electrical property characterization. S. H. Rou, W. A. Geideman

Fiber strength. S. T. Gulati

Infrared fibers. T. Yamagishi

Molecular superconductors and related phenomena. H. H. Wang, G. Saito. P. M. Chaikin

Gels, foams and emulsions. J. Bastide, D. J. Durian, J. Bibette

Synthesis II: Polymeric percursors for oxide ceramics and synthesis of powders (solution methods). R. Roy

Highly dispersed structures. W. M. H. Sachtler

Classical applications of multiple scattering theory. J. R. Willis, V. V. Varadan Frontiers of materials research. H. S. Eleuterio, J. H. Fendler

Structures, properties and design rules in hierarchical materials in nature. E. Baer, E. Evans, N. H. Mendelson

Tuesday, 3 December

morning

Laser etching and ablation. K. Gamo

Instability and growth morphology. G. S. Grest

Interfacial kinetics and migration. C. Rottman, W. Mader

Mechanical testing techniques and mechanical properties. H. G. Bohn

Dry etch/deposition. S. W. Pang, C. Constantine

II-VI compounds. J.-I. Nishizawa, R. D. Bringans

High-temperature superconductor materials: Properties and synthesis II. M. G.

Physical and chemical vapor deposition techniques. S. Hayashi, G. J. M. Dormans

Active fibers I. D. J. DiGiovanni

Novel inorganic cements. D. M. Roy

Shape-memory materials and phenomena: Fundamentals. C. M. Wayman, K. M. Ho, P. C. Clapp

Conducting polymers. A. J. Heeger, A. G. MacDiarmid, J. P. Pouget

Colloids. J. S. Huang, M. O. Robbins, B. J. Ackerson

Dynamics and self-organization. J. S. Langer, P. Bak, R. P. Behringer

Processing science I: Dispersion and rheology. R. G. Horn, M. Tirrell, F. F.

Gas pressure effects on materials processing and design: General papers. M. Armor, K. Uematsu

Zeolites and microporous materials R. I. Gorte

Full-potential multiple-scattering theory. R. K. Nesbet, A. Gonis, P. H. Dederichs

Synthetic hierarchical structures and design rules. C. P. Bosnyak, W. Brostow, L. C. Sawyer, S. H. Carr, B. Lotz, G. Olson

afternoon

Phase formation by ion implantation: Silicides, ceramics and glasses. J. M. E.

Laser deposition. C. M. Friend

Phase transition. D. Turnbull, K. Kawasaki, R. Lipowsky, T.-M. Lu, P. Nielaba

Interfaces and transformation. G. J. Shiflet, R. Sinclair

Indentation: Modeling and experiments. G. M. Pharr

III-V devices and contacts. T. Sands, T. N. Jackson Theory of wide-band-gap semiconductors. D. B. Laks, I. Bernholc, Y. Bar-Yam

HTC thin films I: MBE and PLD. J. R. Kwo, T. Kawai, A. Gupta

Processing by spin pyrolysis and barium- and bismuth-based ferroelectrics. D. Pavne, S. Matsubara

Nonlinear materials. D. W. Hall

Thin films. R. Dorn

Novel inorganic cements. H. Igarashi

Martensitic transformation and phase stability. J. A. Krumhansl, L. E. Tanner, I. Müller, K. Shimizu

Nonlinear optics. G. C. Bjorklund, L.-T. Cheng, S. Etemad, J. LeMoigne

Electrorheological and magnetic colloids. T. C. Halsey, C. F. Zukoski, P. Fabre

Dynamics and hydrodynamics. Y. Couder, D. Jasnow, Y. Oono

Processing science II: Forming processes and texture development. L. A. Boatner

Gas-pressure effects on materials processing and design: New applications. D. J. Stephenson, T. Fujikawa

Synthesis and reactivity of oxides I. A. Corma

Applications of multiple-scattering theory to alloys. G. M. Stocks, P. E. A. Turchi, I. Mertig, D. M. Nicholson, D. D. Johnson

Frontiers of materials research. J. Ziegler, L. Katz

Composite structures and mechanical properties. G. Mayer, P. E. Klunzinger, L. Rebenfeld, A. Hiltner, F. J. McGarry

evening

Fractals and multifractals in models and materials. L. P. Kadanoff

Wednesday, 4 December

morning

Irradiation-induced transformations. C. W. Allen, J.-I. Koike

Electron- and neutral-beam processing. Y. Aoyaga

Step flow and film growth. A. Zangwill, J. M. Blakely, R. W. Collins

Interfaces in thin films. D. A. Smith, E. D. Williams

Strain relaxation and misfit dislocations in heteroepitaxial thin films. R. Hull

Contacts and characterization. A. Katz, C. W. Magee

III-V nitrides. I. Akasaki, W. A. Bryden, T. L. Tansley

Toward HTC circuit technologies I: Devices, needs and processes. T. Van Duzer, R. C. Dynes Pulsed laser ablation of thin-film ferroelectrics. R. Ramesh, K. S. Grabowski

Planar waveguides I. M. P. DeMicheli

Novel experimental aproaches. H. M. Jennings

Shape-memory materials: Structure and properties, R. D. James, A. L. Roytburd

Molecular engineering. M. Lahav, G. M. Whitesides, G. K. Wong, G. R. Möhlmann, S. R. Forrest, M. Hara, Y. Koike

Interfaces: Patterns and forces. F. Rondalez, I. Klein

Pattern formation. H. Müller-Krumbhaar, J. Fineberg, J. Lee

Processing science III: Removal of processing aids and effects of processing on particle surfaces. M. J. Cima

CVD of refractory metals and ceramics: Fundamentals/modeling. C. Bernard, S. A. Gokoglu

Densification I. S. E. Hsu

Synthesis and reactivity of oxides II. H. Knözinger

Relativistic multiple-scattering theory. J. B. Staunton, H. Ebert

Pattern formation in synthetic and natural composites. A. Khachaturyan, R. W. Siegel, G. E. Welsch

afternoon

Deposition with ion beams: ICB, IBAD. I. Yamada

Plasma etching and ion-induced damage. D. W. Hess, G. F. Doughty

Epitaxial growth. R. M. Tromp, M. G. Lagally, P. M. Petroff

Segregation and deformation at interfaces. I. M. Robertson, A. D. Marwick Multilavers: Stresses and mechanical properties. B. M. Clemens, I. K. Schuller

Novel growth and characterization. A. R. Calawa, C. R. Abernathy, F. W. Smith, M. Stavola

Boron compounds. K. Era, G. L. Doll

Toward HTC circuit technologies II: Junctions and circuit technologies. W. Gallagher, L. P. Lee, H. Adachi

Lithium niobate, potassium niobate and late news. S. L. Swartz

Cement-based materials for the infrastructure. S. Diamond, L. J. Struble

Shape-memory effects. Y. Yamada, T. Duerig

Ferromagnetism and related phenomena. A. J. Epstein, H. Iwamura, T. Sugimoto, W. Haase

Friction fracture and adhesion. J. Krim, C. A. Helm, P. A. Thompson, K. A. Mazich

Processing science IV: Densification and microstructure characterization. M. Harmer, R. A. Page

In situ diagnostics. R. Collins

Densification II. A. Lerriche, H. Palmour

Collagen-based scaffolds. I. V. Yannas, E. Bell

Transient characterization methods. W. N. Delgass

Application of MST to surfaces and extended defects. R. Zeller, X.-G. Zhang

Frontiers of materials research. C. M. Wayman

Electronic, optical and magnetic properties of hierarchically structured materials. R. A. Farrell, P. N. Prasad, R. E. Newnham, P. Chaudhari, H. Demiryont

evening

Chemical modification and applications of fullerenes. F. Wudl, R. Smalley, R. C. Haddon, R. L. Whetten

Thursday, 5 December

morning

Ion-assisted and plasma deposition. J. Greene, H. F. Winters, N. Herbots Self-assembled monolayers and growth at electrochemical interfaces. G. Whitesides, B. M. Ocko

Interfaces: High-temperature and composite materials. H. L. Fraser, M. J. Mills Impurities and characterization. H. C. Alt

Electrical properties of LT GaAs. M. Kaminska, J. M. Woodall

Silicon carbide. J. A. Powell, V. Heine

High-temperature superconductors: Microwave properties. R. W. Ralston, V. Z. Kresin, D. E. Oates, T. Konaka

Nondestructive methods for characterizing pavements. R. M. Pearson, C. E. Synolakis

Methods for evaluating performance properties of materials. W. V. Chang Materials processing, alloy design and industrial applications I. L. M. Schetky, H. Otsuka, P. E. Thoma

Nonlinear optics: Second- and third-order processes. Z. G. Soos, R. Silbey, N. Pevghambarian

Scattering and multiple scattering. D. A. Weitz, P. Sheng, B. Duplantier

Processing and synthesis: Synthesis and processing of composites, reaction bonding, solid-state reactions. M. D. Sacks, J. S. Haggerty

Microstructure-process-property relationships. M. A. Pickering

Electronic materials and glass. H. Yamashita

Osteo-inductive materials II: Cell and tissue interactions. R. Bizios, S. I. Stupp

Scaling and structural characterization in hierarchical natural and synthetic structures. A. N. Berker, M. Senechal, P. M. Duxbury, E. A. DiMarzio, L. J. Gibson, R. Gronsky, M. Isaacson

afternoon

Enhanced flux pinning. Y. Matsui, L. Civale

Laser surface modification. R. I. Baseman

Self-assembled monolayers. M. L. Klein, C. E. D. Chidsey, C. M. Knobler

Interfaces in ceramics and electronic materials. C. B. Carter

Electromigration and stress voiding in interconnect metals. J. R. Lloyd

Defects, hydrogen and diffusion. S. K. Estreicher, H. E. Jackson

Structural properties of LT GaAs. Z. Liliental-Weber, M. R. Melloch

Amorphous and microcrystalline semiconductors. Y. Hamakawa, S. Tsuda New materials for infrastructure: General papers. V. M. Castaño

Materials processing, alloy design and industrial applications II.

J. Van Humbeeck, Y. Suzuki, J. Stice

Conjugated polymers: Insulating forms. M. Hanack, F. Wudl

Polymer interfaces and structure. P. Auroy, K. I. Winey

Scattering and porous media. P. Wong, S. K. Sinha, A. H. Thompson

Novel processing and synthesis: Biomimetic processes, composites, ceramicpolymer composites, molecular composites. P. Calvert, I. Aksay, E. P. Giannelis, G. W. Scherer

Chemical vapor infiltration. T. L. Starr

Superconductors. J. Karpinski

Application of MST to LEED photoemission and spectroscopies. P. M. Marcus, M. A. Van Hove, P. J. Durham, A. Bansil

Frontiers of materials research. P. Bachmann

Processing of synethic hierarchical structures. J. H. Fendler, A. Bose, D. Christiansen, P. Calvert, I. A. Aksay, A. McCormick

evening

Anomalous characteristics in low-temperature-grown III-V materials. E. R.

Friday, 6 December

morning

Growth and characterization techniques I. E. Vlieg, H. A. Atwater, P. H. Fuoss

Utilization of LT GaAs in FFTs. U. K. Mishra

Utilization of LT GaAs in optical devices. G. Mourou

Chalcopyrites, oxides and halides. K. J. Bachmann, K. Atsumi

High-temperature superconductor thin films II: Sputtering and CVD. J. R. Gavaler, S. M. Garrison, R. Hiskes

Nonlinear processes and materials. G. I. Stegeman, K. Sasaki, T. Kaino

Shear-induced effects. P. K. Dixon, G. G. Fuller, P. Tong, C. R. Safinya

Phase transitions and networks. D. G. Stroud, W. A. Curtin, G. F. Mazenko, M. H. W. Chan

Organometallic CVD. L. V. Interrante

Materials for morphogen delivery. R. Langer, E. A. Wang, M. Nugent, A. S. Rudolph

Molecular design of hierarchical structures. R. H. Atalla, G. Zhang, D. W. Urry, E. T. Samulski, J. T. Staley, C. Furlong

afternoon

Growth and characterization techniques II. W. Lowe

Critical currents, wires and tapes. A. P. Malozemoff, K. Kishio

Conjugated polymers, conducting forms. C. C. Han, A. A. Ovchinnicov

Diamond films. K. E. Spear

Specimen preparation for transmission electron microscopy of materials III. A. Barna, D. P. Basile, V. L. Carlino, P. E. Fischione, R. Alani