WE HEAR THAT

of Sciences (1971). He remained active in the governance and educational programs of all of these organizations until two years before his death.

The NYU Cosmic-Ray Project's contribution to science extended beyond the study of the cosmic-ray population in the atmosphere. The project produced a body of data that was essential for evaluating radiocarbon production over the ages (it is not constant), for exploring the possibility of radiation hazards in supersonic transport (they exist) and for studying the effect of solar emissions on the primary cosmic rays that generate the neutrons.

And after all this, did Serge Korff get some of the message that he was seeking in cosmic rays? As Ed Light, one of his students, was wont to say, "Of Korff!"

ROSALIND B. MENDELL Department of Physics New York University

John Henry Manley

John Henry Manley, deputy administrator to J. Robert Oppenheimer during the "Manhattan District" years and a pioneer in nuclear physics, died in Los Alamos, New Mexico, on 11 June 1990, at the age of 82.

Manley was born in Harvard, Illinois. He graduated from the University of Illinois in 1929 and received his PhD from the University of Michigan in 1934. For the following three years he was a lecturer at Columbia University. At Columbia Manley worked on ion excitation and molecular beams before turning to the emerging field of neutron physics. His research covered such topics as spin-dependence of nuclear forces, resonance absorption of neutrons and characteristics of nuclear states. In 1937 Manley returned to Illinois as a faculty member, to help develp a program in nuclear physics. His wide range of interests led to collaborations with many of the pioneers of nuclear physics.

At the urging of Leo Szilard, Manley joined the Manhattan Project. By January 1942, less than a month after Pearl Harbor, he was immersed in the chain-reaction effort underway at the University of Chicago. Before long, Manley was working closely with Oppenheimer. This task involved a supervisory connection with research projects that had been "farmed out" to scientists at various universities. Always meticulously objective, Manley was quick to distinguish important developments from superficial ones.

Manley was closely involved with the plans to establish a coordinated experimental effort to develop a nu-

Balzers Cryo... The Only Way to 6.5 K

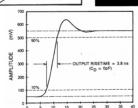
The easy way to optimize your cooling applications with the only standard two-stage, closed-cycle cryogenic refrigerator that delivers working capacity below 10 K. A simple design provides high refrigeration capacity *without* the high cost and complexity of a third stage. Ideal for cooling R & D samples, MRI, superconducting magnet shields, cryopumping and gas liquefaction.

Capacities at various temperatures (temperature and capacity measured simultaneously)

	Temperature (°K)	Capacity (watts)
1st stage	77	115
2nd stage	20	15
1st stage	45	50
2nd stage	10	5
1st stage	35	20
2nd stage	8	2.5
	· · · · · · · · · · · · · · · · · · ·	

Call us today for all the cold facts!

8 Sagamore Park Road • Hudson, NH 03051 TEL (603) 889-6888 • FAX (603) 889-8573


The Sensible Solution

Circle Reader No. 70 to receive literature
Circle Reader No. 115 to have sales representative contact you

CHARGE SENSITIVE PREAMPLIFIER

A250

RUN SILENT — RUN FAST!!!

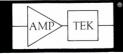
A NEW STATE-OF-THE-ART

EXTERNAL FET

FET CAN BE COOLED

NOISE: < 100e-RMS (Room Temp.) < 20e-RMS (Cooled FET) POWER: 19 mW typical SLEW RATE: > 475 V/ µs GAIN-BANDWIDTH f_T > 1.5 GHZ

If you are using: Solid State Detectors, Proportional counters, Photodiodes, PM tubes, CEMS or MCPs and want the best performance, try an AMPTEK CHARGE SENSITIVE PREAMPLIFIER


Send for Complete Catalog

Low noise (less than 100 electrons RMS) Low power (5 milliwatts) Small size (Hybrids)

(Hybrids)
High Reliability
Radiation hardened
(as high as 10' Rads)
One year warranty

Applications:
Aerospace
Portable Instrumentation
Nuclear Plant
Monitoring
Imaging

Research Experiments Medical and Nuclear Electronics Electro-Optical Systems and others.

AMPTEK INC.

6 DE ANGELO DRIVE, BEDFORD, MA 01730 U.S.A. (617) 275-2242

AUSTRALIA: Austeknis PTY Ltd, Kingswood 2763533; AUSTRIA: Item Beratung, Vienna 975958; BELGIUM: Landre Intechmij, Aartselaar 8875382; BRAZIL: Domex Comercio Exterior Ltda, Sao Jose Dos Campos-SP 234235; DENMARK: Eltime, Slangerup 780303; ENGLAND: Teknis Ltd., Crowthorne, Berkshire 780022; FRANCE: Leversan, Rousset, 42290019; GERMANY: Teknis & Co. Sauerlach, 81049543; HONG KONG: Idealand Electronics Ltd, Kowloon, 7443516-9; INDIA: Bakubhai Ambalai Bombay 6323303; ISRAEL: Giveon Agencies Itd, Tel Aviv, 5612171; ITALY: C.I.E.R. Roma 856814; JAPAN: Jepico, Tokyo 3480623; KOREA: Hongwood International, Seoul, 5551010; NETHERLANDS: Hollinda B.V. The Hague 512801; NORWAY: Ingenior Harald Benestad A/S, Lierskogen 850295; PAKISTAN: Fabricon, Karachi 412266; PHILIPPINES: QV Philippines Co. Ltd Metro Manila, 8193365.

John Henry Manley

clear weapon in a remote and easily guarded area. From the time he arrived in Los Alamos on 4 April 1943, Manley was in charge of coordinating the sustained efforts of the many experimentalists who were trying to develop an explosive nuclear device to help end the war. He later said, "In a way, Los Alamos was sort of unique; everything there having to do with the production and measurement of fissionable materials had been swiped from the academic laboratories—including the personnel."

After the war, Manley received a faculty appointment at Washington University, but after a short time in St. Louis he decided to return to Los Alamos, where he served as associate director from 1947 to 1951. During that period he was also the secretary to the general advisory committee set up by Congress to advise the newly formed Atomic Energy Commission. It was well known at that time that Manley opposed the development of a hydrogen or a "super" bomb on purely practical grounds.

In 1951 Manley left Los Alamos to become head of the physics department at the University of Washington, Seattle. The immediate postwar period was a critical time for many universities, and under Manley's direction the Washington physics department evolved rapidly into a well-known teaching and research center. As department head, Manley exhibited integrity and uncommonly good judgment. What made him a special person was his kindness, compassion, sensitivity and sense of fair play.

In 1954 Manley was a John Guggenheim Fellow, working at Cambridge with Otto Frisch and at Zurich with Hans Staub. In 1957 he returned to Los Alamos as a research adviser to the director, a position he shared with

Stanislaw Ulam. Until his retirement in 1972 Manley continued his involvement in research, showing a deep interest in physical studies of biological materials, which he considered the wave of the future in science. His support of basic research at Los Alamos was an important factor in the evolution of the lab into one of the world's major research institutions. Manley supported an arms freeze and nonproliferation of nuclear weapons, but he believed nuclear power was necessary for a viable energy policy.

Many scientists remember the delightful hospitality of the Manley home. John and his wife Kay were gracious hosts. Topics of conversation there ranged far and wide, but rarely departed from the theme of how to make the world a better place for all.

Mark Jakobson
University of Montana
Missoula, Montana
LOUIS ROSEN
Los Alamos National Laboratory
Los Alamos. New Mexico

Aldert van der Ziel

The physics and engineering communities suffered a great loss with the death of Aldert van der Ziel on 20 January 1991. During his 59-year career, Aldert contributed in so many ways to the physics of electronic noise, the physics and engineering of electronic devices and the art of lownoise measurements, that it is now hard to find a device or an experimental breakthrough in these fields that was not influenced by him.

Aldert was born in Zandeweer, the Netherlands, on 12 December 1910. After receiving his doctorate in physics with Frits Zernike at the University of Gröningen, he joined the Philips Laboratory in Eindhoven. In 1947 he became an associate professor of physics at the University of British Columbia in Vancouver, and in 1950 he was appointed professor of electrical engineering at the University of Minnesota in Minneapolis, where he taught until his retirement in 1980. In addition he was a graduate research professor at the University of Florida from 1968 to 1989, working one term at Gainesville each year.

Aldert wrote 15 books, the best-known being Noise, published in 1959, Solid-State Physical Electronics in 1958 and Fluctuation Phenomena in Semiconductors in 1959. Aldert studied the noise of virtually every kind of electronic device developed in this century. His many papers show that understanding the noise in a device often leads to a far deeper comprehen-

sion of the basic physics. Without advanced mathematical tools, Aldert was more often than not the first to compute the correct noise spectrum of a new type of device. A prime example of this ability is his theory of noise in bipolar devices (p-n junctions and transistors), for which he used a transmission-line analog. He discovered the principle of parametric amplification in 1948 and helped lay the basis for the invention of maser and laser amplifiers.

In the last decade of his life, Aldert realized that his most ambitious dream, to obtain a fundamental understanding of 1/f noise, might come true. In 1980 he was pleasantly surprised to see that quantum 1/f noise, an idea he had originally resisted, could explain both his present and earlier 1/f-noise measurements. He and his students were able to describe the 1/f noise of many modern electronic devices in terms of the simple basic quantum 1/f formula.

It is hard to overestimate Aldert van der Ziel's quiet contributions to the "nuts and bolts" of modern science and engineering. He will be long remembered and greatly missed by many.

C. M. VAN VLIET
University of Montreal
Montreal, Quebec
P. H. HANDEL
University of Missouri
St. Louis, Missouri

Jay E. Hammel

Jay E. Hammel, an experimental plasma physicist at Los Alamos National Laboratory, died on 19 July 1990 at the age of 69 of a rare, virulent form of thyroid cancer. He was associated with the magnetic-confinement thermonuclear fusion program almost from its inception in the early fifties.

In 1951 Jay joined Los Alamos and spent the first five years in the weapons division, participating in nuclear physics research and in nuclear weapons tests in the Pacific. Unfortunately, during one of the test operations Jay was accidentally exposed to radiation that may well have caused his fatal illness many years later.

After the 1956 series of tests Jay joined the controlled thermonuclear fusion research effort and participated in the early investigations of many different magnetic-confinement approaches. In the mid-1970s he took the initiative to revive the earliest and simplest concept, the z-pinch, which had been abandoned in the early 1960s because of magnetohydrodynamic instabilities. He pointed