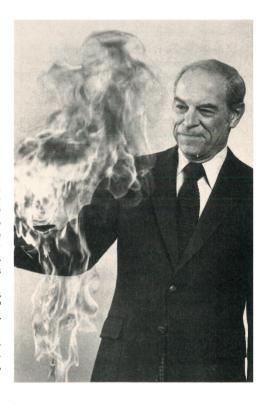
WE HEAR THAT

AAPT RECOGNIZES HERBERT, CREATOR OF 'MR. WIZARD' TV SERIES

At the July meeting of the American Association of Physics Teachers held in Vancouver, British Columbia, Don Herbert, the creator and host of the "Mr. Wizard" television series, was presented with the Robert A. Millikan Award, which recognizes "notable and creative contributions to the teaching of physics."


Herbert received a BS degree from the University of Wisconsin, La Crosse, in 1940. Although he had initially planned to teach science, with the advent of World War II Herbert joined the military instead. After the war he began working in radio, and in 1951 he created the television program "Watch Mr. Wizard." "Many AAPT members remember [the show] as one of their early introductions to science," the award citation said. More recently Herbert and his wife, Norma, have produced a syndicated science news report called "How About..." and

Mr. Wizard, the character popularized by Don Herbert, performs a fiery demonstration. Herbert received the 1991 AAPT Millikan Award.

Herbert has revived his Mr. Wizard role in a program that airs on the cable channel Nickelodeon. In 1979 the Herberts helped organize a group of performers who present science demonstrations at elementary schools; the tour now reaches about 3000 schools and 1.2 million students each year.

After accepting the award Herbert spoke to the assembled AAPT members about his myriad experiences on the "Mr. Wizard" set.

Also at the July meeting Paul Hansma received the first Paul E. Klopsteg Award (see Physics Today, October, page 104).

LORENZ WINS KYOTO PRIZE FOR WORK ON WEATHER AND CHAOS

Edward N. Lorenz, professor emeritus of meteorology at MIT, has won the 1991 Kyoto Prize for science, which he will receive on 10 November in Kyoto, Japan. The prize, worth about \$300 000, is given annually by the Inamori Foundation of Japan in the categories of basic science, advanced technology and the creative arts. The awards were established in 1984 by Kazuo Inamori, chairman of the Kyocera Corp.

The prize citation recognized Lorenz's role in establishing the "theoretical basis of weather and climate predictability, as well as the basis for computer-aided atmospheric physics and meteorology." In addition it noted that he made "his boldest scientific achievement in discovering 'deterministic chaos,' a principle which has profoundly influenced a wide range of

basic sciences."

In the early 1960s Lorenz developed a numerical model of weather that used a computer to solve 12 simultaneous equations. He discovered that the model was very sensitive to initial conditions: Slight variations in input could produce widely diverging outputs. Lorenz realized this behavior implied that weather may be fundamentally unpredictable over times longer than about two or three weeks.

Subsequently Lorenz found a system of only three equations that exhibited similar behavior. A plot of the system as it evolved in phase space showed that the points traced a double-spiral pattern that was regular but never exactly repeated. This set of points is now known as the Lorenz attractor. In 1963 he published his discovery in the *Journal of*

Edward N. Lorenz

the Atmospheric Sciences. That paper was later a starting point for much research on what came to be called chaos theory.

Lorenz was a weather forecaster for the Army Air Corps during World

Zoom In On Physics Online On STN!

In the PHYS database on STN International, more than 1.3 million records cover everything from the planets and computers to atomic energy research.

Produced by the American Institute of Physics and FIZ Karlsruhe, PHYS is the online version of *Physics Briefs*.

In PHYS, you'll find many special features:

- 30% of journal citations available within one month of publication date
- An online thesaurus
- Titles in English
- Astronomical objects indexed

On STN, qualifying academic institutions receive an 80% discount when searching PHYS. And, if you haven't searched PHYS before, you'll enjoy practicing in LPHYS, a learning file also available at a significant discount.

Zoom in on physics on STN!

Marketing Dept. 34191 P.O. Box 3012 Columbus, OH 43210-0012 We'll rush your FREE information packet.

War II. He received an ScD in meteorology from MIT in 1948. He then joined the staff of the meteorology department there, and in 1955 he became a professor of meteorology. From 1977 to 1981 he headed the department, which by then had become the department of meteorology and physical oceanography. He became professor emeritus in 1987, and he is still a senior lecturer at MIT.

ZAPAS RECEIVES 1991 BINGHAM MEDAL FROM SOR

Louis J. Zapas of the National Institute of Standards and Technology, in Gaithersburg, Maryland, is the 1991 recipient of the Bingham Medal, presented by the Society of Rheology. Zapas was selected for his "extraordinary contributions to the field of rheology, especially in the development and experimental testing of the BKZ constitutive equation."

In 1963 at the National Bureau of Standards (now NIST), Zapas, Barry Bernstein and Elliot A. Kearsley formulated a phenomenological model of nonlinear viscoelastic behavior based on physical principles. This model came to be known as the BKZ model. In subsequent work he has tested the model's validity for a wide range of materials, from fluid polymer solutions to solid-like cross-linked rubbers. Zapas also has developed numerous experimental methods and practices that have benefited rheology, the award citation said.

After receiving an MS in chemical engineering from the University of Pittsburgh in 1949, Zapas worked at the Mellon Institute (now a part of

Louis Zapas

Carnegie-Mellon University). From 1957 to 1961 he was at the Washington Research Center of W. R. Grace and Co. In 1961 he joined NIST, from which he retired this past January.

OBITUARIES

Valentine Bargmann

Valentine Bargmann, professor emeritus of mathematical physics at Princeton University, died of heart failure on 20 July 1989. Together with his other expatriate colleagues at Princeton—including Hermann Weyl, John von Neumann and Eugene Wigner—Bargmann exemplified the great European tradition in mathematical physics.

Born in Berlin on 6 April 1908, Bargmann studied at the University of Berlin from 1926 to 1933. When Hitler rose to power he moved to Zürich, where he wrote his doctoral thesis under Gregor Wentzel at the University of Zürich. When he completed his degree, Bargmann still held the German passport issued to him in 1931. The German government under Hitler had since withdrawn the citizenship of persons of the "wrong race" and thus would have invalidated Bargmann's passport if he had been found. But Bargmann managed to use the document to reach the US in 1937, two days before its stated expiration.

In the US Bargmann was hired as an assistant at the Institute for Advanced Study in Princeton. For several years he worked, along with Peter Bergmann, as a scientific assistant to Albert Einstein in his study of unified field theories of gravitation and electromagnetism. In 1943 Bargmann undertook war work on shockwaves with John von Neumann. After the war he joined von Neumann's computer project and worked with von Neumann and Dean Montgomery on the inversion of matrices of large dimension. On the nearby Princeton campus Bargmann lectured, and worked with Wigner on relativistic wave equations. In 1948 their work culminated in the wellknown Bargmann-Wigner equations for elementary particles of arbitrary spin. In 1946 Bargmann finally received an appointment as a visiting lecturer at Princeton University.

He remained a member of the Princeton faculty until his death. Generations of undergraduate and graduate students benefited from his lectures, which were noted for their clarity and polish. But the real gems were the sets of specialized lectures he