
DECOHERENCE 
AND THE TRANSITION 
FROM QUANTUM TO CLASSICAL 

The environment surrounding a quantum system can, 
in effect, monitor some of the system's observables. 
As a result, the eigenstates of those observables 
continuously decohere and can behave like classical states. 

Wojciech H. Zurel"\ 

Quantum mechanics works exceedingly well in all practi­
cal applications. No example of conflict between its 
predictions and experiment is known. Without quantum 
physics we could not explain the behavior of solids, the 
structure and function of DNA, the color of the stars, the 
action of lasers or the properties of superfluids. Yet well 
over half a century after its inception, the debate about the 
relation of quantum mechanics to the familiar physical 
world continues. How can a theory that can account with 
precision for everything we can measure still be deemed 
lacking? 

What is wrong with quantum theory? 
The only "failure" of quantum theory is its inability to 
provide a natural framework that can accommodate our 
prejudices about the workings of the universe. States of 
quantum systems evolve according to the deterministic, 
linear Schrodinger equation, 

in.i lt,b> = Hlt,b> 
dt 

(1) 

That is, just as in classical mechanics, given the initial 
state of the system and its Hamiltonian H, one can 
compute the state at an arbitrary time. This deterministic 
evolution of lt,b> has been verified in carefully controlled 
experiments. Moreover, there is no indication of a border 
between quantum and classical behavior at which equa­
tion 1 fails (see figure 1). 

There is, however, a very poorly controlled experi­
ment with results so tangible and immediate that it has an 
enormous power to convince: Our perceptions are often 
difficult to reconcile with the predictions of equation 1. 
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Why? Given almost any initial condition the universe 
described by lt,b> evolves into a state that simultaneously 
contains many alternatives never seen to coexist in our 
world. Moreover, while the ultimate evidence for the 
choice of one such option resides in our elusive "conscious­
ness," there is every indication that the choice occurs long 
before consciousness ever gets involved. Thus at the root 
of our unease with quantum mechanics is the clash 
between the principle of superposition-the consequence 
of the linearity of equation l-and the everyday classical 
reality in which this principle appears to be violated. 

The problem of measurement has a long and fascinat­
ing history. The first widely accepted explanation of how 
a single outcome emerges from the many possibilities was 
the Copenhagen interpretation, proposed by Niels Bohr,1•2 

who insisted that a classical apparatus is necessary to 
carry out measurements. Thus quantum theory was not 
to be universal. The key feature of the Copenhagen 
interpretation is the dividing line between quantum an:d 
classical. Bohr emphasized that the border must be 
mobile, so that even the "ultimate apparatus"-the 
human nervous system--can be measured and analyzed as 
a quantum object, provided that a suitable classical device 
is available to carry out the task. 

In the absence of a crisp criterion to distinguish 
between quantum and classical, an identification of the 
"classical" with the "macroscopic" has often been tenta­
tively accepted. The inadequacy of this approach has 
become apparent as a result of relatively recent develop­
ments: A cryogenic version of the Weber bar-a gravity­
wave detector-must be treated as a quantum harmonic 
oscillator even though it can weigh a ton.3 Nonclassical 
squeezed states can describe oscillations of suitably 
prepared electromagnetic fields with macroscopic 
numbers of photons. (See the article by Malvin C. Teich 
and Bahaa E. A. Saleh in PHYSICS TODAY, June 1990, page 
26.) Superconducting Josephson junctions have quantum 
states associated with currents involving macroscopic 
numbers of electrons, and yet they can tunnel between the 
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Delineating the border between the quantum realm ruled by the Schrodinger equation and the classical realm 
ruled by Newton 's laws is one of the unresolved problems of physics. Figure 1 

minima of the effective potential.4 

If macroscopic systems cannot always be safely placed 
on the classical side of the boundary, might there be no 
boundary at all? The many-worlds interpretation (or, 
more accurately, the many-universes interpretation) 
claims to do away with the boundary.5 The many-worlds 
interpretation was developed in the 1950s by Hugh 
Everett III with the encouragement of John Archibald 
Wheeler. In this interpretation all of the universe is 
described by quantum theory. Superpositions evolve 
forever according to the Schriidinger equation. Each time 
a suitable interaction takes place between any two 
quantum systems, the wavefunction of the universe splits, 
so that it develops ever more "branches." 

Everett's work was initially almost unnoticed. It was 
taken out of mothballs over a decade later by Bryce 
DeWitt, who managed-in part, through his PHYSICS 

TODAY article (September 1970, page 30)-to upgrade its 
status from virtually unknown to very controversial.6 The 
many-worlds interpretation is a natural choice for quan­
tum cosmology, which describes the whole universe by 
means of a state vector. There is nothing more macroscop­
ic than the universe. It can have no a priori classical 
subsystems. There can be no observer "on the outside." In 
this context, classicality has to be an emergent property of 
the selected observables or systems. 

At a first glance, the two interpretations-many­
worlds · and Copenhagen-have little in common. The 
Copenhagen interpretation demands an a priori "classical 
domain" with a border that enforces a classical "embargo" 
by letting through just one potential outcome. The many­
worlds interpretation aims to abolish the need for the 
border altogether: Every potential outcome is accommo­
dated by the ever proliferating branches of the wavefunc­
tion of the universe. The similarity of the difficulties faced 

by these two viewpoints nevertheless becomes apparent 
when we ask the obvious question "Why do I, the observer, 
perceive only one of the outcomes?" Quantum theory, 
with its freedom to rotate bases in Hilbert space, does not 
even clearly define which states of the universe corre­
spond to branches. Yet our perception of a reality with 
alternatives and not a coherent superposition of alterna­
tives demands an explanation of when, where and how it is 
decided what the observer actually perceives. Considered 
in this context, the many-worlds interpretation in its 
original version does not abolish the border but pushes it 
all the way to the boundary between the physical universe 
and consciousness. Needless to say, this is a very 
uncomfortable place to do physics. 

In spite of the profound difficulties and the lack of a 
breakthrough for some time, recent years have seen a 
growing consensus that progress is being made in dealing 
with the measurement problem. The key (and uncontro­
versial) fact has been known almost since the inception of 
quantum theory, but its significance for the transition 
from quantum to classical is being recognized only now: 
Macroscopic quantum systems are never isolated from 
their environments. Therefore, as H. Dieter Zeh empha­
sized/ they should not be expected to follow Schriidinger's 
equation, which is applicable only to a closed system. As a 
result systems usually regarded as classical suffer (or 
benefit) from the natural loss of quantum coherence, 
which "leaks out" into the environment.8 The resulting 
"decoherence" cannot be ignored when one addresses the 
problem of the reduction of wavepackets: It imposes, in 
effect, the required embargo on the potential outcomes by 
allowing the observer to maintain records of alternatives 
and to be aware of only one branch. 

This article aims to explain the physics and thinking 
behind this approach. The reader should be warned that I 
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am not a disinterested witness to this development7-10 but 
rather one of its proponents. I shall, nevertheless, attempt 
to paint a fairly honest picture and point out difficulties as 
well as accomplishments. 

Correlations and measurements 
A convenient starting point for the discussion of the 
measurement problem, and more generally of the emer­
gence of classical behavior from quantum dynamics, is the 
analysis of quantum measurements due to John von 
Neumann.U In contrast to Bohr, who assumed at the 
outset that apparatus must be classical, von Neumann 
analyzed the case of quantum apparatus. I shall repro­
duce his analysis for the simplest case: a measurement on 
a two-state system <f (which can be thought of as spin lfz) 
with the result recorded by a quantum two-state (one bit) 
detector. 

The Hilbert space ~1, of the system is spanned by the 
orthonormal states It) and I!), while the states ld,) and 
ld,) span the space tW'v of the detector :D. A two­
dimensional tW'v is the absolute minimum needed to 
record the possible outcomes. One can devise a quantum 
detector (see figure 2) that begins in the ld,) state and 
"clicks," It) ld, )-+It) ld, ), when the spin is in the state 
It) but remains unperturbed otherwise.7

•
12 

I shall assume that before the interaction the system 
was in a pure state I tfN) = al t) +PI!), with the complex 
coefficients satisfying lal 2 + IPI 2 = 1. The composite sys­
tem starts as I <I>;)= lt/1.1, ) ld, ). Interaction results in the 
evolution of I <I>;) into a correlated state I<I>c ): 

l<t>i > = <a It>+ PI!) l ld, > 
-+ alt) ld,)+Pil) ld,) =!<I>"> (2) 

This essential and uncontroversial first stage of the 
measurement process can be accomplished with a Schro­
dinger equation with an appropriate interaction. It might 
be tempting to halt the discussion of measurements with 
equation 2. After all, the correlated state vector I<I>c) 
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Reversible Stern-Gerlach apparatus (a) 
splits a beam of atoms into two branches (b) 
that are correlated with the component of the 
spin of the atoms and then recombines the 
branches before the atoms leave the device. 
Eugene Wigner used this gedanken experiment 
to show that a correlation between the spin 
and the location of an atom can be reversibly 
undone. 12 The introduction of a one-bit-that 
is, two-state-quantum detector that changes 
its state when the atom passes nearby 
prevents this: The detector .inherits the 
correlation between the spin and the 
trajectory, so the reversible Stern-Gerlach 
apparatus can no longer undo the correlation. 
(Adapted from ref. 8.) Figure 2 

implies that if the detector is seen in the state ld, ), the sys­
tem is guaranteed to be found in the state It). Why ask for 
anything more? 

The reason for dissatisfaction with I<I>c) as a descrip­
tion of a completed measurement is simple and fundamen­
tal: In the real world, even when we do not know the out­
come, we do know what the alternatives are, and we can 
safely act as if only one of them has already occurred. As 
we shall see in the next section, this is not true for a system 
described by I<I>c). But how can an observer who has not 
yet consulted the detector express his ignorance about the 
outcome without giving up his certainty about the "menu" 
of the possibilities? Quantum theory provides the right 
formal tool for the occasion: A density matrix can be used 
to describe the probability distribution for the alternative 
outcomes. 

Von Neumann was well aware of these difficulties. 
Indeed, he postulated11 that in addition to the unitary 
evolution given by equation 1 there is an ad hoc "process 
1"-a non unitary reduction of the state vector-that takes 
a pure, correlated state I<I>c) into an appropriate mixture. 
This process makes the outcomes independent of one 
another by taking the pure-state density matrix 

pc = !<I>") <<I>cl 
= lal 2 lt><tlld,)<d, l +aP*It)<!l ld,)<d,l 

+a*PI!><tlld,)<d,I+IPI2 It><tlld,)<d,l (3) 

and canceling the off-diagonal terms, which express 
quantum correlations, leaving a reduced density matrix 

Why is the reduced pr easier to interpret as a description 
of a completed measurement than pc? After all, both pr 
and pc contain identical diagonal elements, ;ind both 
outcomes are still present. What, if anything, was gained 
at the substantial price of introducing the nonunitary 
"process 1"? 



The preferred basis: What was measured? 
The key advantage of pr over pc is that its coefficients may 
be interpreted as classical probabilities. The density 
matrix pr can be used to describe the alternative states of a 
composite spin-detector system that has the classical 
correlations: When the off-diagonal terms are absent one 
can safely maintain that the apparatus and the system are 
each separately in a definite but unknown state, and that 
the correlation between them exists in the preferred basis 
defined by the states appearing on the diagonal. By the 
same token, two halves of a split coin are classically 
correlated: Holding an unopened envelope containing one 
ofthem we can be sure that its state is either heads or tails 
(and not some superposition of the two), and that the 
second envelope contains the other, matching alterna­
tive.13 (See the box on this page.) 

By contrast, it is impossible to interpret pc as denoting 
such "classical ignorance." In particular, the detector has 
not even decided on the set of alternatives! This can be il­
lustrated by choosing a= - {3 = llv'2, so that 

(5) 

This state is invariant under rotations of the basis. For in­
stance, instead of using the eigenstates I t ) and I ~ ) of a z 

one can rewrite l<l>c > in terms of the eigenstates of ax' 
10) =(It ) + I ~ ))/v'2, and I®) = (It ) - I ~ ))/v'2. This imme­
diately yields 

(6) 

where the states ld®) = (ld ,) + ld , ) )/ v'2 and ld0 ) = 
(ld,) - ld , ) )/ v'2 are perfectly "legal" states of the 
quantum detector. Therefore, the density matrix 
pc = l<l>c) ( <l>c I could have many different states of the 
subsystems on the diagonal. 

This should not come as a surprise. Except for 
notation the state vector I <l>c ) is the same as the 
wavefunction of a pair of correlated spin-% systems in 
David Bohm's version of the Einstein-Podolsky-Rosen 
paradox.14 Related experiments15 show that nonseparable 
quantum correlations violate Bell's inequalities.16 The 
key point is that before the measurement neither of the 
two spins in a system described by l<l>c) has a definite 
state-their states are not merely unknown. We conclude 
that when a detector is quantum, a superposition of the 
records exists and is a record of a superposition of 
outcomes-a very nonclassical state of affairs. 

Missing information and decoherence 
Unitary evolution condemns every closed quantum system 
to "purity." Yet if the outcomes of a measurement are to 
become independent, with consequences that can be 
explored separately, a way must be found to dispose of the 
excess information. This disposal can be caused by 
interaction with the degrees of freedom external to the 
system, which we shall summarily refer to as "the 
environment." 

Reduction of the state from pc to p r decreases the 
information available to the observer about the composite 
system 8:D. Thus its entropy S = - Trp lnp increases as it 
must, D.S = S(pr)- S(pc) = - (l a l2 lnlal 2 + l/31 2 ln l/31 2

) . 

The initial state described by pc was pure, and the reduced 
state is mixed. Information gain-the objective of mea­
surement-is accomplished only when the observer inter­
acts and becomes correlated with the detector in the 
already precollapsed state pr. This must be preceded by 
an increase in entropy if the outcomes are to become 
classical, so that they can be used as initial conditions to 
predict the future. 

Classical and Quantum Correlations 
When a coin is split into two halves that are put into two 
envelopes, wh ich are then shuffled, numbered and sent 
to two observers, the state of the system can be described 
by a statistical operator- the density matrix, 

Pcoin = '/,(IH1)(H1IIT2)(T2I+IT1)(T1IIH2)(H2Il 

This correctly represents the certainty about the two 
alternatives-that is, whether the heads (HJ or tails {T) 

half is in the selected envelope; the correlation between 
the contents of the two envelopes; and the (classical) 
ignorance about wh ich of the two alternatives is actually 
the case. A density matrix representing a pointer of an 
apparatus correlated with a measured system ought to 
have a similar form. 

By contrast, in David Bohm's version of the Einstein­
Podolsky- Rosen experiment the two photons have corre­
lated polarizations, so that their state must be described 
by I¢') = (1A1)1B2)-IB1)1A2))/,f2, where polariza­
tions A and 8 correspond to the opposite poles of the 
Stokes sphere. Given 1¢'), we have all the information 
quantum theory allows one to have about their combined 
state. Such complete information comes at a price: 
Neither of the two photons has a state "of its own." 
Hence even the alternatives are undefined . A quantum 
apparatus correlated with a quantum system is described 
by an analogous state vector and would suffer from an 
analogous ambiguity about the alternative outcomes. 
(F igure adapted from ref. 13 .) 

AO~, ~rr~Q 
~ B 

As an illustration of the process of environment­
induced decoherence consider a system 8 , a detector :D and 
an environment 0. The environment is also a quantum 
system. Following the first step of the measurement 
process-establishment of the correlation as shown in 
equation 2-the environment similarly interacts and 
becomes correlated with the apparatus: 

W> l0o) = (a lt ) ld ,) +/31!) ld ,) ) l0o) 

___, a lt ) ld ,) 10, ) +/31!> ld,) 10, ) = 1'1') (7) 

The final state of such a combined "von Neumann 
chain" of correlated systems 8:D0 extends the correlation 
beyond the 8:D pair. When the states of the environment 
10;) corresponding to states ld ,) and ld ,) of the detector 
are orthogonal, (0; 101) = 8;1 , the density matrix that 
describes the detector-system combination obtained by 
ignoring (tracing over) the uncontrolled (and unmeasured) 
degrees of freedom is 

P .f:O =Tr & I 'I') ( 'I' I = ~i ( 0 ; I 'I') ( '1' 10;) = pr (8) 

The result pr is precisely the reduced density matrix of 
equation 4 that von Neumann called for. Now, a 
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Coherent superposition of two Gaussian 
wavepackets. Such a wavefunction may 
describe a particle inside a Stern-Gerlach 
apparatus (figure 2) or may develop in the 
course of a double-slit experiment. The phase 
between the two components has been 
chosen to be zero. Figure 3 

superposition of the records-of the states of :D-is no 
longer a record of a superposition. Any coherent superpo­
sition of the states ld, >and ld, >is continuously reduced to 
a mixture. A preferred basis of the detector, sometimes 
called a "pointer basis," has been singled out. An effective 
superselection rule has emerged--decoherence prevents 
superpositions of the preferred basis states from persist­
ing. Moreover, we have obtained all this-or so it 
appears-without having to appeal to anything beyond 
the ordinary, unitary Schrodinger evolution. 

The preferred basis of the detector-or for that 
matter, of any open quantum system-is selected by the 
dynamics. Not all aspects of this process are completely 
clear, but the detector-environment interaction Hamilto­
nian certainly plays a decisive role. In particular, when 
the interaction with the environment dominates, the 
reduced density matrix ends up being diagonal in the 
eigenspaces of an observable A that commutes with the 
interaction Hamiltonian,8 [A, Hint] = 0. This commuta­
tion relation has a simple physical interpretation: It 
guarantees that the pointer observable A will be a 
constant of motion of the interaction Hamiltonian. Thus 
when a system is in the eigenstate of A, interaction with 
the environment will leave it unperturbed. 

In the real world, the spreading of quantum correla­
tions is practically inevitable. For example, if in the 
course of the experiment depicted in figure 2 a photon had 
scattered from the spin-carrying atom while it was 
traveling along one of its two alternative routes, this 
would have resulted in a correlation with the environment 
and would have necessarily led to decoherence. The 
density matrix of the ,f:J) pair would have lost its off­
diagonal terms. Moreover, given that it is impossible to 
catch up with the photon, such a loss of coherence would 
have been irreversible. Irreversibility can also arise from 
more familiar, statistical causes: Environments are noto­
rious for having large numbers of interacting degrees of 
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freedom, making extraction of lost information as difficult 
as reversing trajectories in a Boltzmann gas. 

Decoherence: How long does it take? 
A tractable model of the environment is afforded by a 
collection of harmonic oscillators17

-
19 or, equivalently, by 

a quantum field.20 If a particle is present, excitations of 
the field will scatter off it. The resulting "ripples" will 
constitute a record of its shape, orientation and so on, and 
most importantly its instantaneous location and hence its 
trajectory. 

A boat traveling on a quiet lake or a stone falling into 
water leaves such an imprint on the surface. Our eyesight 
relies on the perturbation left in the preexisting state of 
the electromagnetic field . It is hardly surprising that an 
imprint is left whenever two quantum systems interact, 
even when "nobody islooking," and even when the lake is 
stormy and full of waves, and the field is full of excitations. 
"Messy" initial states of the environment make it difficult 
to decipher the record, but do not interfere with its 
existence. 

A specific model-a particle with position x and a 
scalar field qJ...q,t) propagating in direction q, interacting 
through Hint = EX d.p/dt-is one particularly attractive 
implementation of the above ideasY- 2° Computations 
can be carried out furthest in the case where x and q differ 
(that is, when the field propagates in a direction orthogo­
nal to x). Conclusions are especially easy to formulate in 
the so-called high-temperature limit, in which only effects 
of the thermal excitations of the field .p are taken into 
account. 

In this case the density matrix p(x,x') of the particle in 
the position representation evolves according to the 
master equation 

~= _.i_ [H,p]-y(x-x')(~-~) 
dt fz ax ax' 

2myk8 T( ')2 - fz2 X-X p (9) 

where His the particle's Hamiltonian (although with the 
potential V(x) adjusted because of Hint), y is the relaxation 
rate, k8 is the Boltzmann constant, and T is the 
temperature of the field. Such master equations can be 
derived in a number of different ways: Amir Caldeira and 
Anthony Leggett19 used a modification of the path integral 
formalism due to Richard Feynman and Frank Vernon17 

to obtain the high-temperature limit presented above, 
while William Unruh and I have studied the coupled field­
harmonic oscillator equations of motion to arrive at a 
version that also takes into account zero-point fiuctu­
ations.20 

I will not analyze equation 9 in detail; for our purposes 
it suffices to note that it naturally separates into three 
distinct terms, each of them responsible for a different 
aspect of classical behavior. The first term, the von 
Neumann equation, can be. derived from the Schrodinger 
equation. Classically, it generates Newton's equations of 
motion for the averages of observables (Ehrenfest's 
theorem). The second term causes dissipation: the loss of 
energy and a decrease of the average momentum. The 
relaxation rate is y = 17!2m, where the viscosity 17 = E2 /2 is 
caused by the interaction. The last term is responsible for 
the fluctuations or random kicks that lead to Brownian 
motion. 



For us, however, the effect of the last term on 
quantum superpositions will be of much greater interest. 
I shall show that it destroys quantum coherence, eliminat­
ing off-diagonal terms responsible for quantum correla­
tions between spatially separated pieces of the wave­
packet. It is therefore responsible for the classical 
structure of phase space, as it converts superpositions into 
mixtures of localized wavepackets that, in the classical 
limit, turn into the familiar points in phase space. This ef­
fect is best illustrated by an example. Consider a coherent 
superposition of two Gaussians x(x)- x+(x) + x - (x) with 
widths 8 and separated by a distance D.x, as shown in figure 
3. For the case of wide separation (D.x}!.>8) the correspond­
ing density matrix p(x,x') = x(x) x*(x') has four peaks: two 
on and two off the diagonal (see figure 4). Quantum 
coherence is due to the off-diagonal peaks, for which x and 
x' are very different. With their disappearance, position 
emerges as an approximate preferred basis. 

The effect of the last term of equation 9 on the 
diagonal peaks is small: Near the diagonal x,x', so that 
the last term, which is proportional to (x- x')2, is 
negligible. By contrast, for the off-diagonal peaks 
(x- x')2,(t:.x?, the square of the separation. Therefore 
the off-diagonal terms decay at the rate 
rn - 1 -2ymkBT(t:.x?lfi2. It follows that the quantum 
coherence will disappear exponentially on a decoherence 
time scale20 

fz
2 

- 1(AT )
2 

( ) 
Tn ""TR 2mkBT(D.x)2 = y D.x 10 

where AT = fz/J 2mkB T is the thermal de Broglie wave­
length. For macroscopic objects, the decoherence time 
scale rn predicted by equation 10 is typically orders of 
magnitude smaller than the relaxation time rR = y - 1 . 

For instance, for a system at room temperature 
(T = 300 K) with mass m = 1 g and separation D.x = 1 em, 
the ratio rn I rR = 10- 40! Thus, even if the relaxation time 
was of the order of the age of the universe, rR -1017 sec, 
quantum coherence would be destroyed in rn -10- 23 sec. 
Such enormous ratios obtain only for macroscopic objects, 
and can be inferred only when all ofthe assumptions made 
in the derivation of equation 10 are valid. Nevertheless it 
is now easy to understand why the decoherence between 
macroscopically distinguishable positions can be nearly 
instantaneous even for rather well-isolated systems. Of 
course, equation 10 does not imply that everything will 
become effectively classical: For a massive Weber bar/ 
tiny D.x (-10- 17 em) and cryogenic temperatures 
(T-10-3-1 K) suppress decoherence. For an electron 
m = 10- 27 g, and hence rn can be much more than rR on 
atomic and larger scales. 

Classical limit of quantum dynamics 
The Schrodinger equation was deduced from classical 
mechanics in the Hamilton-Jacobi form. Thus it is no 
surprise that it yields classical equations of motion when fz 
can be regarded as small. This fact, Ehrenfest's theorem, 
Bohr's correspondence principle and the kinship of 
quantum commutators with classical Poisson brackets are 
all a part of the standard lore found in the textbooks. 
However, establishing the quantum-classical correspon­
dence involves the states as well as the equations of 
motion. Quantum mechanics is formulated in Hilbert 
space, which can accommodate localized wavepackets with 
sensible classical limits as well as the most bizarre 

a 

b 

Density matrix (a) of a particle described by 
the wavefunction x<x) of figure 3 in the 
position representation, p(x,x') = x<xlx*(x). 
The peaks near the diagonal (green) 
correspond to the two possible locations of 
the particle. The peaks away from the 
diagonal (red) are due to quantum coherence. 
Their existence and size demonstrate that the 
particle is not in either of the two approximate 
locations but rather is in a coherent 
superposition of them. Environment-induced 
decoherence causes decay of the off-diagonal 
terms of p(x,x') . b: Partially decohered p(x,x') . 
Further decoherence would result in a density 
matrix with diagonal peaks only. It can then 
be regarded as a classical probability 
distribution with an equal probability of 
finding the particle in either of the locations 
corresponding to the Gaussian 
wavepackets. Figure 4 
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superpositions. By contrast, classical dynamics happens 
in phase space. 

To facilitate the study of this aspect of the problem, it 
is convenient to employ the Wigner transform of a 
wavefunction tfJ...x), 

~x,p) = -
1- J~ eipyl~ t/J*(x + .L) .J x- .L) dy (11) 

211"fl -~ 2 '~"\. 2 
which expresses quantum states as functions of position 
and momentum. 

The Wigner distribution W(x,p) is real, but it 
can be negative. Hence it cannot be regarded as a 
probability distribution. Nevertheless, when integrated 
over either of the two variables, it yields the 
probability distribution for the other (for example, 
fW(x,p)dp = ftfJ...xW). For a minimum-uncertainty wave­
packet tfJ...x)-exp( - (x- x0)

2/ 282 + ipoXIIij, the Wigner 
distribution is a Gaussian in x and p: 

W(x p) = _..!._ exp{ - (x- Xo)2 (p- Po)282} (12) 
, 11'fl 82 ~ 

A system described by this type of Wigner distribution is 
localized in both x andp. Nothing else that Hilbert space 
has to offer is closer to being a classical point in phase 
space. 

The Wigner distribution is easily generalized to the 
case of a general density matrix: 

W(x,p) = 2~f_-~~ eipyl~ p( x- ~ , x + ~) dy (13) 

We will be using the evolving (initially pure but eventually 
mixed) density matrix of the particle, discussed above. 

The Wigner transform suggests a strategy for exhibit­
ing classical behavior: Whenever W(x,p) is a mixture of 
localized wavepackets (as in equation 12), it can be 
regarded as a classical probability distribution in the 
phase space. However, when the underlying state is truly 
quantum, its Wigner distribution function will have 
alternating sign. This property alone will make it 
impossible to regard the function as a probability distribu­
tion in phase space. For the superposition of the two 
Gaussians discussed above, 

w w + + w - + _..!._ exp( - p282 - x2) cos( !!.x p) (14) 
2 11'fl ~ 82 /i 

where w + and w- are Wigner transforms of the 
Gaussians x+ and x-. The resulting W(x,p) is shown in fig­
ure 5a. A mixture of two Gaussian wavepackets would be 
described by the same two Gaussians, but without the last, 
oscillating term. 

The equation of motion for W(x,p) can be obtained 
from equation 9 for p(x,x'). For a harmonic oscillator 
(V -x2) it does not depend on /i: 

dW = ( _i!_ aw + av aW) + 2ra(pW) + D azw (15) 
dt m ax ax ap) ap ap2 

where V is the renormalized potential and 
D= 2mykBT= 1JkBT. The three terms of this equation 
correspond to the three terms of equation 9. 

The first term is easily identified as a classical Poisson 
bracket [ H, Wj. Thus classical dynamics in its Liouville 
form follows from quantum dynamics, at least for the 
harmonic oscillator case (for more general V(x) the Poisson 
bracket would have to be supplemented by quantum 
corrections of order /i). The second term is friction. The 
last term results in the diffusion of W(x,p) in momentum at 
a rate D. 

This last term has precisely the right effect on 
nonclassical W(x,p) to produce the correct structure of the 
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classical phase space by barring all but the probability 
distributions of well-localized wavepackets. This can be 
seen as follows: A superposition of two spatially separated 
wavepackets results in a sinusoidal modulation of the 
Wigner distribution in the momentum coordinate (see 
figure 5a). The oscillating term cos(p!!.xl /i) is an eigen­
function of the diffusion operator az I ap2 in the last term of 
equation 15. As a result, the modulation of Win p will be 
washed out by diffusion at a rate To -l = 2mykBT(!!.x)Z!~. 
Negative valleys of W(x,p) will fill in on a time scale of or­
der To, the same rate given by equation 10. In the 
example described here W(x,p) will retain just two peaks 
(see figure 5b), which now correspond to the two classical 
alternatives. Superpositions of momenta will also deco­
here once the resulting difference in velocities has spread 
out the wavefunction in x . 

The ratio of the decoherence and relaxation time 
scales depends on ~1m (see equation 10). Therefore when 
m is large and /i small, decoherence can be nearly 
instantaneous (T0 ::::::0), while at the same time the motion 
of compact wavepackets (points in classical phase space) in 
the smooth potential becomes nearly reversible. I suggest 
that this idealization is responsible for our confidence in 
classical mechanics and, more generally, our belief in 
classical reality. Consequently, the discussion above 
demonstrates that decoherence and the transition from 
quantum to classical (usually regarded as esoteric) is an 
inevitable counterpart of the ubiquitous phenomenon of 
friction. 

Decoherence, histories, and the universe 
The universe is, of course, a closed system. As far as 
quantum phase information is concerned, it is practically 
the only system that is effectively closed. Of course, an 
observer inhabiting a quantum universe can monitor only 
very few observables, and decoherence can arise when the 
unobserved degrees of freedom are "traced over."21 A 
more fundamental issue, however, is that of the emer­
gence of the effective classicality as a feature of the 
universe that is more or less independent of special 
observers, or of coarse grainings such as a fixed separation 
of the universe into observed and unobserved systems. 

The quantum mechanics of the universe must allow 
for possible large quantum fluctuations of space-time 
geometry at certain epochs and scales. In particular, it 
may include important effects of quantum gravity early in 
the expansion of the universe. Nontrivial issues such as 
the emergence of the usual notion of time in quantum 
mechanics must then be addressed. Here we shall neglect 
such considerations and simply treat the universe as a 
closed system with a simple initial condition. 

Significant progress in the study of decoherence in 
this context has been reported by Murray Gell-Mann and 
James B. Hartle,10 who are pursuing a program suitable 
for quantum cosmology that may be called the many­
histories interpretation. The many-histories interpreta­
tion builds on the foundation of Everett's many-worlds 
interpretation, but with the addition of three crucial 
ingredients: the notion of sets of alternative coarse­
grained histories of a quantum system, the decoherence of 
the histories in a set, and their approximate determinism 
near the effectively classical limit. 

A set of coarse-grained alternatives for a quantum 
system at a given time can be represented by a set of 
mutually exclusive projection operators, each correspond­
ing to a different range of values for some properties of the 
system at that time. (A completely fine-grained set of 
alternatives would be a complete set of commuting 
operators.) An exhaustive set of mutually exclusive 
coarse-grained alternative histories can be obtained, each 



one represented by a time-ordered sequence of such 
projection operators. 

The definition of consistent histories for a closed 
quantum system was first proposed by Robert Griffiths.22 

He demonstrated that when the sequences of projection 
operators satisfy a certain condition (the vanishing of the 
real part of every interference term between sequences), 
the histories characterized by these sequences can be 
assigned classical probabilities-in other words, the proba­
bilities of alternative histories can be added. Griffiths's 
idea was further extended by Roland Omnes,23 who 
developed the "logical interpretation" of quantum me­
chanics by demonstrating how the rules of ordinary logic 
can be recovered when making statements about proper­
ties that satisfy the Griffiths criterion. 

Recently Gell-Mann and Hartle pointed out that in 
practice somewhat stronger conditions than Griffiths's 
tend to hold whenever histories decohere. The strongest 
condition is connected with the idea of records and the 
crucial fact that noncommuting projection operators in a 
historical sequence can be registered through commuting 
operators designating records. They defined a decoher­
ence functional in terms of which the Griffiths criterion 
and the stronger versions of decoherence are easily stated. 

Given the initial state of the universe (perhaps a 

Wigner distributions. a: Distribution 
corresponding to the pure state of figure 3. 
Note the two separate positive peaks (green) 
as well as the oscillating interference term in 
between them. IMx,p) cannot be regarded as 
a classical distribution in the phase space as 
long as it has negative (red) contributions. 
b: Decoherence results in diffusion of IMx,p) 
in the direction of momentum. As a result, 
the negative and positive ripples of the 
interference term diffuse into each other and 
cancel out. This process is almost 
instantaneous for open, macroscopic systems. 
In the appropriate limit both the classical 
structure of the phase space and classical 
dynamics emerge naturally . Figure 5 

mixed state) and the time evolution dictated by the 
quantum field theory of all the elementary particles and 
their interactions, one can in principle predict probabili­
ties for any set of alternative decohering coarse-grained 
histories of the universe. Gell-Mann and Hartle raise the 
question of which sets exhibit the classicality of familiar 
experience. Decoherence is a precondition for such 
classicality; the remaining criterion, approximate deter­
minism, is not yet defined with precision and generality. 

Within the many-histories program, one is studying10 

the stringent requirements put on the coarseness of 
histories by their classicality. Besides the familiar and 
comparatively trivial indeterminacy imposed by the 
uncertainty principle, there is the further coarse graining 
required for decoherence of histories. Still further coarse­
ness-for example, that encountered in following hydrody­
namic variables averaged over macroscopic scales-can 
supply the high inertia that resists the noise associated 
with the mechanics of decoherence and so permits 
decohering histories to exhibit approximate predictability. 
Thus the effectively classical domain through which 
quantum mechanics can be perceived necessarily involves 
a much greater indeterminacy than is generally attribut­
ed to the quantum character of natural phenomena. 

Quantum theory of classical reality 
We have seen how classical reality emerges from the 
substrate of quantum physics: Open quantum systems are 
forced into states described by localized wavepackets. 
These essentially classical states obey classical equations 
of motion, although with damping and fluctuations of 
possibly quantum origin. What else is there to explain? 

The origin of the question about the interpretation of 
quantum physics can be traced to the clash between 
predictions of the Schrodinger equation and our percep­
tions. It is therefore useful to conclude this paper by 
revisiting the source of the problem-our awareness of 
definite outcomes. If the mental processes that produce 
this awareness were essentially unphysical, there would 
be no hope of addressing the ultimate question-why do 
we perceive just one of the quantum alternatives?-within 
the context of physics. Indeed, one might be tempted to 
follow Eugene Wigner in giving consciousness the last 
word in collapsing the state vector.24 I shall assume the 
opposite. That is, I shall examine the idea that the higher 
mental processes all correspond to well-defined but, at 
present, poorly understood information processing func­
tions that are carried out by physical systems, our brains. 

Described in this manner, awareness becomes sus­
ceptible to physical analysis. In particular, the process of 
decoherence is bound to affect the states of the brain: 
Relevant observables of individual neurons, including 
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chemical concentrations and electrical potentials, are 
macroscopic. They obey classical, dissipative equations of 
motion. Thus any quantum superposition of the states of 
neurons will be destroyed far too quickly for us to become 
conscious of quantum goings-on: Decoherence applies to 
our own "state of mind." 

One might still ask why the preferred basis of neurons 
becomes correlated with the classical observables in the 
familiar universe. The selection of available interaction 
Hamiltonians is limited and must constrain the choices of 
the detectable observables. There is, however, another 
process that must have played a decisive role: Our senses 
did not evolve for the purpose of verifying quantum 
mechanics. Rather, they developed through a process in 
which survival of the fittest played a central role. And 
when nothing can be gained from prediction, there is no 
evolutionary reason for perception. Moreover, only classi­
cal states are robust in spite of decoherence and therefore 
have predictable consequences. Hence one might argue 
that we had to evolve to perceive classical reality. 

There is little doubt that the process of decoherence 
sketched in this paper is an important fragment central to 
the understanding of the big picture-the transition from 
quantum to classical: Decoherence destroys superposi­
tions. The environment induces, in effect, a superselec­
tion rule that prevents certain superpositions from being 
observed. Only states that survive this process can 
become classical. · 

There is even less doubt that the rough outline of this 
big picture will be further extended. Much work needs to 
be done both on technical issues (such as studying more re­
alistic models that could lead to experiments) and on 
issues that require new conceptual input (such as defining 
what constitutes a "system" or answering the question of 
how an observer fits into the big picture). 

Decoherence is of use within the framework of either 
of the two major interpretations: It can supply a 
definition of the branches in Everett's many-worlds 
interpretation, but it can also delineate the border that is 
so central to Bohr's point of view. And if there is one les­
son to be learned from what we already know about such 
matters, it is undoubtedly the key role played by informa­
tion and its transfer in the quantum universe. 

The natural sciences were built on a tacit assumption: 
Information about a physical system can be acquired 
without influencing the system's state. Until recently, 
information was regarded as unphysical, a mere record of 
the tangible, material universe, existing beyond and 
essentially decoupled from the domain governed by the 
laws of physics. This view is no longer tenable (see, for ex­
ample, Rolf Landauer's article in PHYSICS TODAY, May 
1991, page 23). Quantum theory has helped to put an end 
to such Laplacean dreams of a mechanical universe. The 
dividing line between what is and what is known to be has 
been blurred forever. Conscious observers have lost their 
monopoly on acquiring and storing information. The 
environment can also monitor a system, and the only 
difference from a man-made apparatus is that the records 
maintained by the environment are nearly impossible to 
decipher. Nevertheless, such monitoring causes decoher­
ence, which allows the familiar approximation known as 
classical objective reality-a perception of a selected 
subset of all conceivable quantum states evolving in a 
largely predictable manner-to emerge from the quantum 
substrate. 

I would like to thank John Archibald Wheeler for many inspiring 
and enjoyable discussions on quantum measurements, Murray 
Gell-Mann and Jim Hartle for useful and frequent exchanges of 
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ideas about decoherence and for detailed comments on the 
manuscript, and Mike Warren for help with computer graphics. 

References 
1. N. Bohr, Nature 121, 580 (1928); reprinted in ref. 2. 
2. J. A. Wheeler, W. H. Zurek, eds., Quantum Theory and Mea­

surements, Princeton U. P., Princeton, N.J. (1983). 
3. V. B. Braginsky, Y.l. Vorontsov, K. S. Thorne, Science 209, 

547 (1980); reprinted in ref. 2. C. M. Caves, K. S. Thorne, 
R. W. P. Drewer, V. D. Sandberg, M. Zimmerman, Rev. Mod. 
Phys. 52, 341 (1980). 

4. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, 
A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987). A. 0. 
Caldeira, A. J . Leggett, Ann. Phys. (N.Y.) 149, 374 (1983). 
C. D. Tesche, Ann. N.Y. Acad. Sci. 480, 36 (1986). 

5. H. Everett III, Rev. Mod. Phys. 29, 454 (1957). J . A. Wheeler, 
Rev. Mod. Phys. 29, 463 (1957). 

6. B.S. DeWitt, N. Graham, eds., The Many-Worlds Interpreta­
tion of Quantum Mechanics, Princeton U. P., Princeton, N.J. 
(1973). 

7. H . D. Zeh, Found. Phys. 1, 69 (1970); reprinted in ref. 2. 
8. W. H. Zurek, Phys. Rev. D 24, 1516 (1981); 26, 1862 (1982). 
9. E. P . Wigner, in Quantum Optics, Experimental Gravitation, 

and the Measurement Theory, P. Meystre, M. 0 . Scully, eds., 
Plenum, New York (1983), p. 43. E. Joos, H. D. Zeh, Z. Phys. B 
59, 223 (1985). F. Haake, D. F. Walls, in Quantum Optics IV, 
J . D. Harvey, D. F. Walls, eds., Springer-Verlag, New York 
(1986), p. 181. G. J. Milburn, C. A. Holmes, Phys. Rev. Lett. 
56, 2237 (1986). A. Albrecht, "Investigating Decoherence in a 
Simple System," Fermilab preprint 91/101-A (1991). B. L. 
Hu, J.P. Paz, Y. Zhang, "Quantum Brownian Motion in a 
General Environment," U. Maryland preprint (1991). 

10. M. Gell-Mann, J . B. Hartle, in Complexity, Entropy, and the 
Physics of Information, W. H. Zurek, ed., Addison-Wesley, 
Redwood City, Calif. (1990), p. 425. J . B. Hartle, in Quantum 
Cosmology and Baby Universes, S. Coleman, J . B. Hartle, T. 
Piran, S. Weinberg, eds., World Scientific, Singapore (1991), 
p. 425. 

11. J . von Neumann, Mathematische Grundlagen der Quanten­
mechanik, Springer-Verlag, Berlin (1932), English trans. by 
R T. Beyer, Mathematical Foundations of Quantum Mechan­
ics, Princeton U. P., Princeton, N. J. (1955); partly reprinted 
in ref. 2. 

12. E. P . Wigner, Am. J . Phys. 31, 6 (1963), conta ins the original 
design of the reversible Stern-Gerlach apparatus. See M. 0 . 
Scully, B. G. Englert, J . Schwinger, Phys. Rev. A 40, 1775 
(1989), and references therein for recent · discussion of the 
"one-bit detector." 

13. J . A. Wheeler, in Problems in Foundations of Physics, Proc. 
Int. Sch. Phys. "Enrico Fermi," Course 72, N. Toraldo di 
Francia, ed., North Holland, Amsterdam (1979), p. 395. 

14. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935). 
D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, 
N.J. (1951), ch. 22, sections 15-19; reprinted in ref. 2. 

15. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 91 
(1982). A. Aspect, J . Dalibard, G. Roger , Phys. Rev. Lett. 49, 
1804 (1982). 

16. J . S. Bell, Physics 1, 195 (1964). 
17. R P. Feynman, F. L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963). 
18. H. Dekker, Phys. Rep. 80, 1 (1981). 
19. A. 0 . Caldeira, A J. Leggett, Physica A 121, 587 (1983); Phys. 

Rev. A 31, 1057 (1985). 
20. W. H. Zurek, in Frontiers of Nonequilibrium Statistical Phys­

ics, P. Meystre, M. 0 . Scully, eds., Plenum, New York (1986), 
p. 145. W. G. Unruh, W. H. Zurek, Phys. Rev. D 40, 1071 
(1989). 

21. J . J. Halliwell, Phys. Rev. D 39, 2912 (1989). S. Habib, R 
Laflamme, Phys. Rev. D 42, 4056 (1990). 

22. R J. Griffiths, Sta t. Phys. 36, 219 (1984). 
23. R Omnes, Ann. Phys. (N.Y.) 201, 354, (1990). 
24. E. P. Wigner, in The Scientist Speculates, I. J . Good, ed., 

Heineman, London (1961), p. 284; reprinted in ref. 2. • 




