
TIME-SCALE INV ARIANCE IN 
TRANSPORT AND RELAXATION 

Important, and often puzzling, features of transport 
and relaxation in disordered systems can be attributed 
to the long-tailed distributions of the times 
between events that limit the motion. 

Harvey Scher, Michael F. Shlesinger and John T. Bendler 

An early theme in probability was calculating the fair 
ante for various games of chance. Nicolas Bernoulli 
introduced a seemingly innocent game, first published in 
1713, that yielded a paradoxical result. The result has 
become known as the St. Petersburg paradox, because of 
an analysis written later by Daniel Bernoulli in the 
Commentary of the St. Petersburg Academy. 1 

Flip a coin. If it comes up heads, then you win one 
coin. If it comes up tails, flip again until a head appears. 
If N tails precede a head, then you win 2N coins. Each 
such event occurs with probability 1/ 2N+ 1

. The mean 
winnings are therefore % X 1 + 1/4 X 2 + % X 4 + ... = o6 . 

The house wants you to ante an infinity of coins (the 
house's expected loss). You counter that a smaller ante is 
in order because your median winnings are only one coin 
and to win an infinity of coins you must flip an infinity of 
times, which is unreasonable. 

The paradox arises from trying to determine a 
characteristic size from a distribution that does not 
possess one. Winnings occur on all scales, with an order of 
magnitude greater winning occurring an order of magni­
tude less often. The lesson to be learned from the St. 
Petersburg paradox is that one should work directly with 
the probability distribution, and not just with its moments. 
This will be a dominant theme in this article. 

If the first moment (the mean) of a probability 
distribution exists, it defines a scale. While one major 
thrust of physics is to find the right scale for a problem­
the size of an atom, the mobility of an electron in a 
crystal-a newer thrust is to investigate problems that 
have no characteristic scale. In critical phenomena, the 
struggles and successes in tackling scale-invariant prob­
lems where correlation lengths diverge are well known. 
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In this article we are interested in microscopic processes 
that do not possess a characteristic time scale. We will 
focus on transport and relaxation in disordered solids 
when the mean-waiting-time scale between events­
electron hopping, defect movement and so on-diverges. 
Transport governed by such a long-tailed waiting-time 
distribution is called "dispersive" because many time 
scales coexist. 

Scale-invariant dynamic phenomena are seen in a 
wide variety of disordered materials. Dispersive motion 
can account quantitatively for many of the universal 
characteristics seen in transport and relaxation measure­
ments in these materials, which include amorphous 
semiconductors and insulators, polymer films (see figure 
1), molecular solid solutions and glasses. We begin our 
treatment of these topics with a discussion of charge 
transport in disordered semiconductors and close with an 
extension of the above ideas to "stretched exponential" 
relaxation in glassy materials. 

Dispersive transport 
The movement of electrons in disordered systems is a 
paradigm of long-tailed distributions and is easily mea­
sured. A common example is transport via a sequence of 
charge-transfer steps from one localized site to another in 
the presence of an applied electric field. The process is 
called "trapping" if the transfer step involves thermal 
activation from the site to a conduction band, in which the 
charge diffuses to the next site. Tunneling directly 
between localized sites is known as hopping. Figure 2 
shows these processes schematically. Due to the disorder, 
the transfer time can be a random variable, characterized 
by the probability 1/J(t) dt that the time for an individual 
transfer (or event) is between t and t + dt. The accumulat­
ed sequence of these events in the motion of a charge 
carrier can be viewed as a continuous-time random walk.2 

By specifying the probability distribution 1/J(t) and the 
spatial bias introduced by the electric field, one can 
calculate t he properties of a packet of charge propagating 
across a sample.3 
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Time-of-flight measurements. The canonical tech­
nique for measuring electron transport is the time-of­
flight experiment. A pulse of strongly absorbed light, 
incident near an electrode, generates nonequilibrium 
electrons and holes. In the polarity shown in figure 3, the 
electrons are swept into the near electrode, leaving a sheet 
of holes to move to the far electrode; this motion gives rise 
to a current l(t) in the external circuit. The current l (t) in 
the sample has two contributions, the conduction current 
i c (x,t) and the displacement current. One integrates over 
the sample thickness d to obtain 

1ld· EdV l(t) =- Jc(x, t) dx + --
d 0 d dt 

(1) 

Here Vis the voltage across the sample and E the dielectric 
constant. When a constant voltage Vis maintained we see 
that l(t) is the space average of the conduction current. 
Thus the holes do not have to be collected at the far 
electrode to generate a current in the circuit; changes in 
the field across the sample induced by the moving holes 
generate a current as the battery attempts to maintain a 
constant voltage. 

Strain birefringence in plastically 
deformed polycarbonate, viewed 
in plane-polarized light. The arms 
of the cross are composed of 
cold-drawn resin. The more 
intensely colored regions 
surrounding the cross are sheared 
polymer. Such optical techniques 
for measuring strain have been 
used in conjunction with 
mec hanical studies to verify the 
Ko hlrausch law for relaxation and 
recovery in a wide number of 
thermoplastics. (See the box on 
page 34.) Figure 1 

Curve 1 in figure 3 shows the expected result for the 
current l(t) due to normal transport. The velocity of the 
sheet of holes is constant; therefore the current is constant 
until the holes are absorbed at the electrode, at which time 
they no longer contribute to the current. The "transition 
region," over which the current drops to zero, is a measure 
of the spread in the hole packet due to normal diffusion. 

Early experiments done in the late 1960s revealed 
rather bizarre current traces. Standing in sharp contrast 
to the current trace shown in curve 1 is curve 2, measured 
by Merle Scharfe of Xerox for amorphous As2Se3 , a 
material then used as a photoconductor in photocopy 
machines.< Not only does the current l (t) decrease over 
the entire time of flight (except for a small "plateau" 
region), but the particular shape of this decay is scale 
invariant. A scale is defined by the transit time t, 
corresponding to the onset of the long tail. For a given ma­
terial, l(t) ! l(t,) vs tl t,. is independent of t,. In the same 
relative units, the shape of the "normal" current trace 
would depend explicitly on the transit time t,, because the 
width of the region of constant current increases linearly 
with t,, while the "transition region" increases only as ,Jt:. 
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Further, using the usual definition of the drift mobility, 

f.ld = d!(t,.E) (2) 

where E is the applied electric field, one observes f.ld to de­
pend inversely on the sample thickness! These facts 
remained a puzzle until a fundamentally new theory 
clarified both the phenomenon and the expected form of 
the experimental trace. 

Random-walk theory. This new theory assumed 
that each charge carrier independently undergoes a 
random walk biased in a preferred direction by the applied 
field. The entire character of the propagating packet of 
charge depends on one key feature of the probability 
distribution lj;(t): If the first two moments of lj;(t) exist, the 
transport is normal, as in curve 1 of figure 3. If the first 
moment (t) of lj;(t) does not exist, the charge packet can 
still transit the sample; however, it exhibits an unusual 
dispersion. For a probability distribution lj;(t) with an 
algebraic tail given by 

lj;(t)~ t - (1 + (3) (3) 

one has (t) = oo for (3<, 1 ((3 must be greater than 0 for lj;(t) 
to be normalizable). The mean position of the spatially 
biased time-evolving packet then varies as 

l (t) a: l(E) t f3 (4) 

This is discussed in the box on page 30 , which outlines 
how to deal mathematically with an infinite first moment 
(t); l(E) is the mean step displacement. This sublinear 
variation in time is the key to all the peculiar features of 
the current l(t) discussed above. Once we have demon­
strated this central point, we will discuss how the 
distribution in equation 3 arises naturally in disordered 
systems. 

Figure 4 contrasts the packet propagations P(l,t) for 
two types of probability distributions lj;(t) that have the 
same spatial bias due to the electric field . The normal 
(Gaussian) transport and diffusion result from a lj;(t) with 
finite first and second moments. The Gaussian behavior is 
a consequence of the well-known central limit theorem. 
The position of the peak of the distribution coincides with 
the spatial mean l(t). This is not the case for the packet 
propagation P(l,t) generated by the algebraic distribution 

Energy levels in an amorphous 
semiconductor. This schematic diagram 

illustrates band transport with trapping, 
and hopping transitions between 

localized states in the energy 
gap. Figure 2 
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in equation 3 with (3<, 1. With increasing time, the peak of 
this P(l,t) remains at the initial position, while the mean is 
continuously displaced from it. This unusual behavior 
originates in the relatively small, but finite, probability of 
an event time that is much larger than a typical one. 
Because such a rare, but quite long, event time can be 
comparable to the accumulation of typical event times in 
the carrier's transit across a sample, it can have a large ef­
fect on the carrier motion. The forward "streaming" of 
the carriers is due mainly to those carriers undergoing 
typical events. Eventually, many of these forward carri­
ers will experience one of the long event times. Thus the 
mean position of the packet increases with time, but at an 
ever decreasing rate. The mean is therefore a sublinear 
function of time (equation 4). The measured current is the 
space average of the conduction current in the sample 
(equation 1), which is proportional to the average packet 
velocity: 

l(t) a: dl(t)/ dt ~ t- (1- (3) , t < t,. (5) 

Hence the current decreases even before the carriers are 
absorbed into the electrode. When a reasonable fraction of 
the carriers (approximately 10%) reach the electrode, the 
current begins to decrease at a faster rate due to the 
carrier loss. The detailed solution3 to the problem of a 
random walk with a bias toward an absorbing plane shows 
a crossover to 

t > t,. (6) 

A double logarithmic plot of the current l(t), corre­
sponding to equations 5 and 6, is simply two lines with 
slopes - (1 - (3) and - (1 + (3), separated by a narrow 
transition region. Note that the sum of the slopes is - 2, 
independent of the exponent (3 that defines the algebraic 
probability distribution! An estimate for the transit time 
t,., which denotes the transition region from slope 
- (1 - (3) to - (1 + (3), is easily obtained from the relation 
l(t,.)~d or, using equation 4, 

t,. ~[d/l(E)jl 1 f3 (7) 

(Typically, l(E) is proportional toE.) Using equation 2 as a 
definition of mobility for this dispersive transport, one 
then has a field- and thickness-dependent drift mobility 

Band states 

1 
~---~-

Localized states 

Trapping 
and release 

Hopping 



I 
Transient photocurrent or time-of-flight experiment scheme, and plot of 
results . A light flash of duration less than the transit timet, is incident on a 
semitransparent electrode and is absorbed in a depth of the dielectric much 
smaller than the sample thickness d. Carriers of one sign move ac ross the 
sample, inducing a time-dependent current l(t) in the external c ircuit. 
Curve 1 is a typi ca l current trace measured in a material with a w ell-defined 
mobility. The transit time t, is the time for the current to drop to one-half of 
its upper-plateau value. Curve 2 is a highly dispersive transient photocurrent 
trace measured in As2Se3 by Merle Scharfe of Xerox 4 Figure 3 

f.id. This anomalous dependence illustrates that in a 
system with time-scale invariance there are no intrinsic 
transport coefficients. External parameters such as 
sample thickness constrain the dynamic response of the 
system, and hence these limit the "transport coeffi­
cients"-that is, they become laboratory-time dependent! 

The theory embodied in equations 5-7 predicts both 
the shape of the transient current and the relation 
between this shape and the dependence of the transit time 
on the sample thickness and field- namely, that the 
values of the exponent (3 determined from the shape and 
from the transit-time dependence are the same. This 
relationship is a hallmark of dispersive transport. 

Experiments and mechanisms 
These relationships were dramatically confirmed in a 
careful study of the phototransients in a-As2Se3 by 
Gustave Pfister of Xerox. 4 Figure 5a is a double logarith­
mic plot of the normalized current traces in one film of a­
As2Se3 for a range of transit times encompassing nearly 
three decades in time. The shape of l(t) is scale invariant 
(see the discussion in the box on page 30); the curve comes 
from the theory with (3 = 0.45. Pfister observed the 
dependence of the transit time on the thickness predicted 
by equation 7 in these measurements. Below, we will see 
this feature with other transients. 

All of the above results depend on the algebraic 
probability distribution lj;(t) given in equation 3. Is this 
distribution a reasonable assumption for a disordered 
material? Under what conditions and material properties 
does it hold? What is the physical significance of the 
exponent (3? These queries are best addressed by looking 
at a simple and commonplace cause of disorder: localized 
electronic states in the material that act as traps. In the 
case of extensive multiple trapping, where the total time 
spent in traps far exceeds the total transit time in the 
conduction band, one can heuristically write 

(8) 

Here 5; is the probability for capture into the ith trap, and 
W; is the release rate from that trap. The distribution in 
equation 8 is normalized because L; 5; = 1. If one inserts a 
relation between the release rate and the energy E of the 
trap (measured from the band edge) 

W; = W0 exp( - d kT) (9) 

and assumes a broad (say, exponential) distribution p(t:) of 
these energy levels, 

p(t:) =Po exp(- El kT0) (10) 

then one can show5 that equation 3 holds for t > r, the 
mean tra p capture time, with 

/3 = T/ T0 (11) 

Disorder in the form of a distribution of trap states 
promotes a spectrum of intrinsic times that limits the 
transport. In this simple example, the spectrum-that is, 
the relative release times-is controlled by both the 
temperature T and the width T0 of the distribution p(t:) . 
The dispersion parameter (3 is simply the ratio of these 
controlling factors because the dependence on energy E is 
the same in equations 9 and 10. When T > T0 , the 
weighting of the release times over the entire distribution 
is no longer sufficient to allow the rare event (the long re­
lease time) to occur often enough to influence the 
accumulated typical release times. In this regime, !3 > 1 
and ( t) is finite, so that the transport becomes quasi­
normal, although it is not truly Gaussian until !3 > 2. 

Intrinsic hydrogenated amorphous silicon provides an 
excellent example of the multiple trapping mechanism of 
dispersive transport.6 The decay of the current in a-Si:H is 
purely algebraic for nearly six decades of time (see figure 
5b). The two-slope behavior is clearly evident, and the 
sum of the slopes is - 2.01. The exponent (3 is found to 
vary as the ratio T/ T0 , as in equation 11, with T0 about 30 
meV. The energy kT0 has been interpreted to be the width 
of the (exponential) conduction-band tail and is in agree­
ment with other determinations of this width. 

Hopping involves the tunneling of an electron 
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Normal transport Dispersive transport 
b 
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Transiting packet of charge. These 
sequences of "snapshots" represent packets 
of charge transiting a sample, with time 
increasing from top to bottom. The normal 
transport in a corresponds to linear evolution 
in time of the packet's mean position and 
gives rise to the current trace shown by curve 
1 of figure 3. In b the packet's displacement 
is controlled by a large dispersion in the 
arrival time of the carriers at the far electrode. 
The mean position of the packet is a sublinear 
function of time and gives rise to the current 
trace shown by curve 2 in figure 3. Figure 4 

What Happened to the Infinity 

If lj;(t) is a probability density whose first moment <t> is 
infinite, then how can we write temporal relationships 
and avoid this infinity? The answer is, we calculate 
moments of P(l,t), the probability of being at site l at 
timet, and do not ca lculate the moments of 1/;(t) directly. 
It can be shown that the mean position l(t) may be 
written as 

Z(t) = L l P(l,t) = L _, ( l(E) 1/;* (u) ) 
u[1- 1/;*(u)] 

Here L- 1 is the inverse Laplace transform, l(f) is the 
mean step distance, and 1/;*(u) is the Laplace transform of 
lj;(t). The manner in which 

<t>= ft-rf;(t)dtL T- oo 

diverges induces a scaling law for l(t). (It diverges as 
T1 

- f3 when 1/;(t)- t - 11 + f31 for large t, or, conversely, 
1/;*(u)-1 - u f3 for small u.) We find asymptotically that 
the mean position 

Z(t) -l(E) L- 1(u - 11 + /3) ) = l(E) t f3 

The variance from the mean cr(t) of P(l,t) is such that 
cr(t)/ Z(t) is a constant, in contrast to cr(t)f l (t) for a 
Gaussian packet, which varies as t- 112 . This lies at the 
heart of the shape invariance of normal ized l(t) vs 
normalized t . Note that <t> = ro does not imply that all 
the particles wait an infinity of time between hops, so that 
there is no motion, just as in the St. Petersburg paradox 
not every gambler wins an infin ity of coins. 
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between localized states. The tunneling rate is a sensitive 
function of the intersite distance and energy separation of 
these states. The site-to-site variation in these quantities 
can result in a wide tunneling-rate spectrum, which can 
easily generate the algebraic distribution of equation 3 
over an appreciable time range. If the disorder in the 
energy separations is negligible, then the exponent (3 can 
be weakly dependent on or even independent of the 
temperature. 

The latter appears to be the case in a recent set of 
transient current measurements in the well-studied poly­
meric thin film PVK (polyvinylcarbazole)? Figure 6a 
again shows the familiar signature of dispersive transport 
in the double logarithmic plot of the current l(t) in PVK. 
The data points in figure 6b are the transit times 
measured for samples of various thicknesses. The black 
line has a slope of 11 (3, where (3 is determined by the shape 
of l(t) in figure 6a. The observed scaling behavior of the 
transit time with thickness is seen to be in agreement with 
the prediction of equation 7. 

In these measurements the exponent (3 is observed to 
be effectively independent of temperature in the experi­
mental range - 10 'C to + 100 'C. As the researchers who 
did this exciting measurement state, "This implies that 
hole transport in PVK is determined solely by the 
geometry of the polymer and not by its energetics." In 
other words, the effects of the variations in the energy 
separations on the tunneling rates are negligible. · 

Silicon dioxide is another important material that 
exhibits hole transport characterized8 by a temperature­
independent exponent (3. The displacement l(t) of charge 
is manifested in a measurement of the recovery of the shift 
in the threshold voltage in the oxide layer of MOS devices 
(figure 7a). The scaling ofthe transit time (slope 11(3) with 
oxide thickness seen in figure 7b is in excellent agreement 
with the value of (3 = 0.25 for the entire three-decade 
range of transit times. 

Most measurements on both hydrogenated amor­
phous silicon and amorphous chalcogenides are consistent 
with (3 proportional to temperature, except at low 
temperatures. Thus excess carrier transport in amor­
phous semiconductors is dominated by the omnipresent 
exponential band tails and is independent of the effects of 
deep traps. 

The great challenge to further theoretical develop­
ment of the microscopic details of dispersive transport is 
the problem of hopping in systems with both energy level 
spread and stochastic geometry. There are no exact 
solutions to this problem, and numerical simulation 
results are inconsistent. While hopping is the transport 
mechanism in a wide variety of polymeric systems, the 
exact nature of the individual charge-transfer steps has 
not been resolved. 



Transient photocurrents represented in log­
log plots. a: Plot for amorphous As 2Se3 . Data 

points correspond to a superposition of 
transients covering nearly three decades of 

transit time. (Adapted from G. Pfister, ref. 4.) 
b: Plot for intrinsic hydrogenated amorphous 

silicon a-Si:H at 160 K. The current is 
determined by the sample thickness, applied 

field and temperature, and decays 
algebraically over the nearly six decades of 

observation time of the experiment. (Adapted 
from ref. 6.) Figure 5 

The simpler problem of multiple trapping has re­
ceived considerable attention. Jaan Noolandi and Fred 
Schmidlin of Xerox showed that the conventional set of 
coupled kinetic equations describing repeated trapping 
and release can be cast into the framework of the 
continuous-time random walk, and they derived the exact 
form of the probability distribution 1/J(t) for multiple 
trapping.9 A. Rudenko and V. Arkhipov of the Moscow 
Engineering Physics Institute, Thomas Tiedje and Albert 
Rose of Exxon, and Joseph Orenstein and his coworkers at 
MIT have presented a useful pictorial representation of 
the multiple-trapping process based on the idea of a time­
dependent demarcation level.9 E. Muller-Horsche and his 
coworkers have developed a reliable procedure for extract­
ing rate distributions from photocurrents that requires 
measuring the current I(t) over about ten decades of 
time.10 Shlesinger has used a particular form of equation 
8 to discuss dispersive transport in terms of fractal time, 11 

a topic to which we will return later. 
On the experimental side, while the materials are 

complex and quite varied, and though details of the 
transport mechanism remain to be elucidated, the near 
universality of the main features of their dispersive 
transport attests to the generality of time-scale in variance. 

Very recent transport measurements on a wide class 
of glassy polymers have revealed 12 a current shape that is 
"intermediate" between that of curve 1 in figure 3 and 
those of the curves in figure 5. The current shows a flat in­
itial transient and a long tail for times exceeding the 
transit time. The normal scaling relation, equation 2, 
holds for the transit time but not for the variance (see the 
box on page 30). These features are qualitatively in accord 
with an exponent /3 that is less than 2 but not less than 1, a 
first moment ( t) that is finite and a second moment <f> 
that is not.3 A suitable distribution p(t:) of energy levels 
can quantitatively account for these new measurements.10 

Relaxation laws 
We focused above on the dispersive transport of a single 
charge and the current it generates. In a natural 
extension of these ideas, we now consider the dispersive 
transport of a collection of mobile defects. This type of 
transport can be the basis for a well-known law for 
relaxation in a wide variety of random systems. 

Peter Debye, with his classic treatment of dielectric 
relaxation in fluids, set the framework for much of our 
intuition about relaxation. He derived the law governing 
how initially aligned small, spherical, dipolar molecules of 
radius R and dipole moment f.l(t) relax in a fluid of 
viscosity TJ and temperature T when the external electric 
field is removed. The relaxation from an aligned to a 
random configuration of dipole moments occurs because of 
random collisions with fluid particles. The relaxation 
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function rp(t), defined as ( f.l(t) f.l(O))/ ( f.l2(0)) , was calculated 
to be exponential: rp(t) = exp(- tiT), with T = 41TTJRI kT. 
Thus only a single time scale is needed to characterize the 
relaxation process. 

Traditionally, analysis of dielectric relaxation in more 
complicated systems focused on the complex dielectric 
constant E(w) and its deviation from the form derived from 
a single relaxation time.13 A change of focus from 
frequency to time-from e(w) to rp(t)-occurred in 1970 
when Graham Williams and David Watts13 found empiri­
cally that the following form fit data for glassy and 
polymeric materials, including polyethylacrylate and 
propylene oxide, with /3 between 0 and 1: 

rp(t) = exp[ - (t/7)11 ] (12) 

(Andrez Plonka has made an extensive survey of the role 
of this relaxation function rp(t) in investigating the time­
dependent reactivity of trapped species in condensed 
matter.14

) In the past few years this form for rp(t) has been 
used to fit an ever widening variety of experimental data, 
including data from mechanical, nmr, dielectric, enthal­
pic, volumetric, dynamic light scattering, magnetic relaxa­
tion and reaction kinetics measurements. It was recently 
shown to account for the relaxation of the localized 
electronic structure of a-Si:H, which we will describe 
below.15 

It was in a study of remnant magnetization that the 
expression "stretched exponential" was born to describe 
equation 12, and the nomenclature has stuck. The 
modern flurry of activity actually obscures the fact that 
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the stretched exponential was introduced in 1863 to 
describe mechanical creep in glassy fibers. 16 (See the box 
on page 34.) 

The stretched exponential was a subject of interest in 
the "Brinkman report," which stated17: 

There seems to be a universal function that slow 
relaxations obey. If the system is driven (or normally 
fluctuates) out of equilibrium, it returns according to 
the formula exp[ - (t!r)P ]. .. . Unfortunately, this is 
not a mathematical expression that is frequently 
encountered in physics, so little idea exists of what the 
underlying mechanisms are. 

There are now several derivations of the stretched 
exponential for systems in three dimensions, involving 
diverse concepts such as percolation, hierarchical relaxa­
tion of constraints, and multipolar interaction transi­
tions.18 We will consider a mechanism based on a reaction 
picture involving the dispersive transport of defects. 
Although this concept and the others just mentioned are 
dissimilar, a common mathematical structure connects 
them.19 

In the Debye model, the underlying mechanism of 
relaxation was fluid particles randomly hitting polar 
molecules. Consider now a model for a glass in which 
mobile defects hit a frozen-in dipole and instantaneously 
cause its relaxation. Sivert Glarum of Bell Laboratories 
used a model of this type in which a defect undergoes 
Brownian motion in one dimension.20 We generalize 
Glarum's work by allowing for a finite concentration c of 
defects in three dimensions and, most importantly, by 
treating their motion as dispersive.11 What is the proba­
bility that the "dipole" will first be reached at time t by 
one of theN diffusing defects in a volume N l c? Because 
each defect moves independently, the probability is a 
product of N factors that for large N becomes an 
exponential: 

¢(t) = exp[ - c S(t)] 

Here S(t) is the number of distinct sites a defect visits in a 
timet. 

In three dimensions, 

{ 
t, for ( t) finite 

S(t)~ t!3 , f3<1, for ( t) infinite 

In one dimension S(t) goes as t112 for ( t) finite and t 1312 for 
( t) infinite. 

The first case occurs when the mean time ( t) between 
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Signature of dispersive transport in 
polyvinylcarbazole and resulting scaling 
behavior of the transit time. a: Superposition 
master plot of l(t) obtained at a number of 
electric field strengths and temperatures . 
The value of the exponent f3 is 0.6. 
b: Dependence of transit time on sample 
thickness. The black line is drawn with slope 
1 1/3, where f3 is 0.6. The colored line has the 
slope of 1 that is expected for normal 
transport. (Adapted from ref. 7. ) Figure 6 

defect hops is finite, and the latter case for dispersive 
transport where 1/J(t)~ t - <l + !3>, f3 < 1. Within the defect 
diffusion model, we obtain either Debye relaxation (for 
finite ( t) ) or stretched-exponential relaxation (for infinite 
( t) ). In the latter case, any details that do not change the 
condition ( t) = oo are irrelevant. Thus one answer to the 
question of why the stretched exponential is so widespread 
is that it can be a probability limit distribution . 

The defect diffusion derivation of the stretched 
exponential calls for the movement of defects. But what is 
a defect? In general, this is a difficult question to answer, 
although many possibilities have been suggested for 
specific materials. Let us look at two distinct cases. The 
first is the practical engineering polymer polycarbonate, a 
high-impact thermoplastic resin. It displays ductility in 
the glass state, unlike most polymers, which are brittle. 
Much speculation has centered on the origin of this plastic 
flow, and a variety of solid-state nmr line-shape and 
relaxation experiments have provided, for the first time, 
structural details of molecular motion in the glass.21 In 
particular, carbon-13 and deuterium line-shape measure­
ments reveal that aromatic ring motions occur readily in 
the solid, with little or no disturbance of the backbone 
direction or orientation. A mobile carbonate (C03 ) bond is 
considered here to be the "defect" whose movement is 
responsible for inducing the mechanical, nmr and dielec­
tric relaxation in this glassy polymer.22 Indeed, all three 
types of measurements find stretched-exponential behav­
ior (equation 12), with an exponent f3 of 0.15. (See the 
figure in the box on page 34.) The low value of f3 may be 
connected to the quasi-one-dimensional motion of the 
mobile bond. 

The second example comes from a recent study15 of 
the relaxation of the nonequilibrium electronic and 



atomic structures of doped a-Si:H. In this study, which 
has provided considerable evidence for the physical 
mechanism we have been discussing, James Kakalios and 
his coworkers at Xerox examined the relaxation of the 
temperature-dependent densities of dangling bond defects 
and donor states in rapidly cooled samples of n-type a-Si:H 
(and acceptor states in p-type material), as probed by 
monitoring the time dependence of the band-tail states. 
They found the relaxation to be well described by a 
stretched exponential with exponent f3 varying linearly 
with temperature. (The room temperature value of f3 for 
n~type a-Si:H is 0.45.) A good candidate for the diffusing 
"defects" that account for the kinetics of the structural 
relaxation is the bonded hydrogen. In other studies, 
Kakalios and his coworkers have established that the 
hydrogen exhibits dispersive diffusion. Moreover, they 
have made the important observation that the f3(T) 
parameter determined from the measurement of hydro­
gen diffusion is entirely consistent with the f3(T ) obtained 
by fitting the relaxation data to a stretched exponential. 

A concluding illustration 
The subtlety of dispersive transport involves not only a 
broad range of times but the relative probabilities of 
events with these times occurring. To illustrate this point, 
let us return to our canonical experiment, transport of a 
pulse of excess charge across a film of a disordered solid. 
Suppose that the spread in arrival times to the back 
electrode is due to the stochastic delays introduced by 
carrier trapping. If a finite fraction of the pulse can arrive 
without being trapped, then one can define a time scale t .. 
for the transit by equation 2, where /1-d is in this case the 
band mobility. The trapped fraction of the pulse typically 
has a mean release time tR that is greater than t .. and is 
therefore "lost" to the transiting pulse on the time scale of 
t, .. However, by increasing the probability of an encounter 
with the traps (by increasing the trap density, for 
example), one can have t R ~ t .. , where t .. , the time scale of 
the measurement, is now the average accumulation of 
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release times before arrival at the back electrode, and /1-d 
in equation 2 is now the conventional "drift" mobility. 
The "intermediate" situation, where a well-defined time t, 
becomes blurred, can arise when t, is in the midst of a 
range of release times. This simple example shows that 
besides the range, we must be careful to consider also the 
encounter probability. 

A special case of equation 8 will clarify the remaining 
discussion. Consider a discrete set of trapping levels 
indexed by an integer n, such that 11 

(13) 

Here each level n has a power-law weighting (a", a< 1) and 
a release time (b - ", b < 1). The nondimensional mean 
time b<t) of the distribution given in equation 13 is 

b( t) =1-a I a"b - n+ l 
a n = l 

(14) 

For a > b, b( t) = oo and the asymptotic decay is 
1/J(t)-t - u + m, with 

/3= ln a 
ln b 

(15) 

which is in the form of a fractal dimension. 11 For b > a, the 
mean time b( t) is finite . This example clearly shows the 
interplay between a wide range of times I b - " j and the 
probability a" of encountering each of these times. One 
can rewrite equation 11 as10 

/3= .I_= - Elk T0 = ln[p(E)Ip0 ] 

T0 - ElkT ln[ W(c)I W0 ] 
(16) 

The form for f3 is the same as for the discrete case in equa-
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MOS device behavior. a: Recovery of the threshold voltage of a silicon MOS device fcir a 

range of thicknesses. The curve is obtained from theory. The recovery is due to the dispersive 
transport of holes across the oxide layer. b: Dependence of transit time on thickness of the 

oxide layer in a silicon MOS device. The so lid line has a slope of 1 1/3, where f3 is determined 
from the recovery of the threshold voltage of the device. Here f3 is 0.25. (Adapted from 
ref. 8. ) Figure 7 
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Mechanical Relaxation 

When Robert Hooke in 1678 presented his law accord­

ing to which a restoring force is linearly proportional to 

elongation, it was appreciated that exceptions existed. 

One area where Hooke's law did not apply was creep 

and stress relaxation in solids. In 1829 Vicat, who 

surveyed the sagging of wires and the general stabi lity of 

suspension bridges across the Rhone, initiated a scientific 

study of creep . The problem of the viscoelastic response 

of solids has since cha llenged a number ofdist inguished 

physicists, including Gaspard Gustave de Coriolis, 

Claude-Louis-Marie Navier, Karl Friedrich Gauss, Wil­

helm Weber, james Clerk Maxwell and Ludwig Boltz­

mann. In 1854 Rudolf Kohlrausch introduced the 

stretched exponential in his study of the loss of charge in 

Leyden jars. In his experiments on magnetic forces 

around the same time, Weber studied creep in the silk 

threads he used to suspend magnetic bars. In 1863 

Frederick Kohlrausch (following the experiments of his 

father Rudolf and the work of Weber) used the stretched 

exponential as an empirical fit for creep and relaxation 

data in silk and glass fibers and in rubber. 16 As the figure 

below indicates, modern experiments on mechanical 

behavior, which employ optical birefringence measure­

ments along with the traditional stress-strain measure­

ments, agree well with Frederick Koh lrausch's findings. 
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Strain recovery in polycarbonate, 
measured using birefringence. The data 
are fit to a stretched exponential with 
(J = 0.15. (From D . G. LeGrand, W . V. 

Olszewski, J. T. Bendler,}. Polym. Sci. 
25, 1149, 1987 .) 

tion 15. The rate range ! W(E)) is determined by the energy 
levels, but the density p(E) of these levels determines the 
relative encounter probabilities. Thus dispersive trans­
port arises when these relative encounters decrease at a 
rate that is carefully balanced by the increase in the delay 
times-that is, when a > b. This subtlety lies at the heart 
of the algebraic behavior of t/J(t). It is also this same 
interplay-between the frequency of occurrence of the 
various sizes of correlated regions and the sizes of these re­
gions-that accounts23 for critical phenomena near Tc. 

Finally, if we take the limits a-% and b-% in 
equation 14, then the mean time b( t ) is simply the 

34 PHYSICS TODAY JANUARY 1991 

(diverging) mean winnings of the coin-toss game that gave 
rise to the original St. Petersburg paradox. 

We gratefully acknowledge the suggestions and critical reading of 
the manuscript by Martin A. Abkowitz, Alton H Clark, William 
A. Curtin, JonH Harris, LeonidA. Turkevich, JosephKlafterand 
Richard Zallen. 
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