TIME-SCALE INVARIANCE IN
TRANSPORT AND RELAXATION

Important, and often puzzling, feafures of transport
and relaxation in disordered systems can be atfributed
to the long-tailed distributions of the times

between events that limit the mofion.

Harvey Scher, Michael F. Shlesinger and John T. Bendler

An early theme in probability was calculating the fair
ante for various games of chance. Nicolas Bernoulli
introduced a seemingly innocent game, first published in
1713, that yielded a paradoxical result. The result has
become known as the St. Petersburg paradox, because of
an analysis written later by Daniel Bernoulli in the
Commentary of the St. Petersburg Academy.’

Flip a coin. If it comes up heads, then you win one
coin. If it comes up tails, flip again until a head appears.
If N tails precede a head, then you win 2V coins. Each
such event occurs with probability 1/2¥ *!. The mean
winnings are therefore ¥, X1+ Y, X2 + Y% X4 + ... = ».
The house wants you to ante an infinity of coins (the
house’s expected loss). You counter that a smaller ante is
in order because your median winnings are only one coin
and to win an infinity of coins you must flip an infinity of
times, which is unreasonable.

The paradox arises from trying to determine a
characteristic size from a distribution that does not
possess one. Winnings occur on all scales, with an order of
magnitude greater winning occurring an order of magni-
tude less often. The lesson to be learned from the St.
Petersburg paradox is that one should work directly with
the probability distribution, and not just with its moments.
This will be a dominant theme in this article.

If the first moment (the mean) of a probability
distribution exists, it defines a scale. While one major
thrust of physics is to find the right scale for a problem—
the size of an atom, the mobility of an electron in a
crystal—a newer thrust is to investigate problems that
have no characteristic scale. -In critical phenomena, the
struggles and successes in tackling scale-invariant prob-
lems where correlation lengths diverge are well known.
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In this article we are interested in microscopic processes
that do not possess a characteristic time scale. We will
focus on transport and relaxation in disordered solids
when the mean-waiting-time scale between events—
electron hopping, defect movement and so on—diverges.
Transport governed by such a long-tailed waiting-time
distribution is called ‘“dispersive” because many time
scales coexist.

Scale-invariant dynamic phenomena are seen in a
wide variety of disordered materials. Dispersive motion
can account quantitatively for many of the universal
characteristics seen in transport and relaxation measure-
ments in these materials, which include amorphous
semiconductors and insulators, polymer films (see figure
1), molecular solid solutions and glasses. We begin our
treatment of these topics with a discussion of charge
transport in disordered semiconductors and close with an
extension of the above ideas to “stretched exponential”
relaxation in glassy materials.

Dispersive fransport

The movement of electrons in disordered systems is a
paradigm of long-tailed distributions and is easily mea-
sured. A common example is transport via a sequence of
charge-transfer steps from one localized site to another in
the presence of an applied electric field. The process is
called “trapping” if the transfer step involves thermal
activation from the site to a conduction band, in which the
charge diffuses to the next site. Tunneling directly
between localized sites is known as hopping. Figure 2
shows these processes schematically. Due to the disorder,
the transfer time can be a random variable, characterized
by the probability ¥(¢) d¢ that the time for an individual
transfer (or event) is between ¢ and ¢ + dt. The accumulat-
ed sequence of these events in the motion of a charge
carrier can be viewed as a continuous-time random walk.?
By specifying the probability distribution #(f) and the
spatial bias introduced by the electric field, one can
calculate the properties of -a packet of charge propagating
across a sample.?
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Time-of-flight measurements. The canonical tech-
nique for measuring electron transport is the time-of-
flight experiment. A pulse of strongly absorbed light,
incident near an electrode, generates nonequilibrium
electrons and holes. In the polarity shown in figure 3, the
electrons are swept into the near electrode, leaving a sheet
of holes to move to the far electrode; this motion gives rise
to a current I(#) in the external circuit. The current I(¢) in
the sample has two contributions, the conduction current
J.(x,t) and the displacement current. One integrates over
the sample thickness d to obtain

1 (<. e dv
1) =— 0 d _— 1
0) dLJc(x)x+ddt W

Here Vis the voltage across the sample and € the dielectric
constant. When a constant voltage Vis maintained we see
that I(¢) is the space average of the conduction current.
Thus the holes do not have to be collected at the far
electrode to generate a current in the circuit; changes in
the field across the sample induced by the moving holes
generate a current as the battery attempts to maintain a
constant voltage.

Strain birefringence in plastically
deformed polycarbonate, viewed
in plane-polarized light. The arms
of the cross are composed of
cold-drawn resin. The more
intensely colored regions
surrounding the cross are sheared
polymer. Such optical techniques
for measuring strain have been
used in conjunction with
mechanical studies to verify the
Kohlrausch law for relaxation and
recovery in a wide number of
thermoplastics. (See the box on
page 34.) Figure 1

Curve 1 in figure 3 shows the expected result for the
current I(t) due to normal transport. The velocity of the
sheet of holes is constant; therefore the current is constant
until the holes are absorbed at the electrode, at which time
they no longer contribute to the current. The “transition
region,” over which the current drops to zero, is a measure
of the spread in the hole packet due to normal diffusion.

Early experiments done in the late 1960s revealed
rather bizarre current traces. Standing in sharp contrast
to the current trace shown in curve 1 is curve 2, measured
by Merle Scharfe of Xerox for amorphous As,Se;, a
material then used as a photoconductor in photocopy
machines.* Not only does the current I(t) decrease over
the entire time of flight (except for a small “plateau”
region), but the particular shape of this decay is scale
invariant. A scale is defined by the transit time ¢,
corresponding to the onset of the long tail. For a given ma-
terial, I(¢)/I(t,) vs t/t. is independent of ¢.. In the same
relative units, the shape of the “normal” current trace
would depend explicitly on the transit time ¢, , because the
width of the region of constant current increases linearly
with ¢,, while the “transition region” increases only as \/Z .
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Further, using the usual definition of the drift mobility,
pe =d/(t.E) 2)

where E is the applied electric field, one observes 4 to de-
pend inversely on the sample thickness! These facts
remained a puzzle until a fundamentally new theory
clarified both the phenomenon and the expected form of
the experimental trace.

Random-walk theory. This new theory assumed
that each charge carrier independently undergoes a
random walk biased in a preferred direction by the applied
field. The entire character of the propagating packet of
charge depends on one key feature of the probability
distribution ¥(#): If the first two moments of 1(¢) exist, the
transport is normal, as in curve 1 of figure 3. If the first
moment {¢> of ¥(¢) does not exist, the charge packet can
still transit the sample; however, it exhibits an unusual
dispersion. For a probability distribution #(f) with an
algebraic tail given by

w(t)~t—(1 + B (3)

one has (t> = «» for 8<1 (8 must be greater than 0 for ¢(¢)
to be normalizable). The mean position of the spatially
biased time-evolving packet then varies as

L)< UE) t? )

This is discussed in the box on page 30, which outlines
how to deal mathematically with an infinite first moment
{ty; I(E) is the mean step displacement. This sublinear
variation in time is the key to all the peculiar features of
the current I(¢) discussed above. Once we have demon-
strated this central point, we will discuss how the
distribution in equation 3 arises naturally in disordered
systems.

Figure 4 contrasts the packet propagations P(L,t) for
two types of probability distributions ¢(¢) that have the
same spatial bias due to the electric field. The normal
(Gaussian) transport and diffusion result from a ¥(¢) with
finite first and second moments. The Gaussian behavior is
a consequence of the well-known central limit theorem.
The position of the peak of the distribution coincides with
the spatial mean [(¢). This is not the case for the packet
propagation P(l,t) generated by the algebraic distribution

in equation 3 with S<1. With increasing time, the peak of
this P(/,t) remains at the initial position, while the mean is
continuously displaced from it. This unusual behavior
originates in the relatively small, but finite, probability of
an event time that is much larger than a typical one.
Because such a rare, but quite long, event time can be
comparable to the accumulation of typical event times in
the carrier’s transit across a sample, it can have a large ef-
fect on the carrier motion. The forward “streaming” of
the carriers is due mainly to those carriers undergoing
typical events. Eventually, many of these forward carri-
ers will experience one of the long event times. Thus the
mean position of the packet increases with time, but at an
ever decreasing rate. The mean is therefore a sublinear
function of time (equation 4). The measured current is the
space average of the conduction current in the sample
(equation 1), which is proportional to the average packet
velocity:

I cdl®)/dt~t= =P, t<t, )

Hence the current decreases even before the carriers are
absorbed into the electrode. When a reasonable fraction of
the carriers (approximately 10%) reach the electrode, the
current begins to decrease at a faster rate due to the
carrier loss. The detailed solution® to the problem of a
random walk with a bias toward an absorbing plane shows
a crossover to

It)~t= 4P tst, 6)

A double logarithmic plot of the current I(¢), corre-
sponding to equations 5 and 6, is simply two lines with
slopes — (1 —p) and — (1 + ), separated by a narrow
transition region. Note that the sum of the slopesis — 2,
independent of the exponent 3 that defines the algebraic
probability distribution! An estimate for the transit time
t., which denotes the transition region from slope
— (1 =R to — (1 + P), is easily obtained from the relation
I(t,)~d or, using equation 4,

t, ~[d/UE]? )

(Typically, I(E) is proportional to £.) Using equation2asa
definition of mobility for this dispersive transport, one
then has a field- and thickness-dependent drift mobility

Band states

Energy levels in an amorphous
semiconductor. This schematic diagram
illustrates band transport with trapping,
and hopping transitions between
localized states in the energy -

gap. Figure 2
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Transient photocurrent or time-of-flight experiment scheme, and plot of
results. A light flash of duration less than the transit time ¢, is incident on a
semitransparent electrode and is absorbed in a depth of the dielectric much
smaller than the sample thickness d. Carriers of one sign move across the
sample, inducing a time-dependent current I(#) in the external circuit.

Curve 1 is a typical current trace measured in a material with a well-defined
mobility. The transit time ¢, is the time for the current to drop to one-half of
its upper-plateau value. Curve 2 is a highly dispersive transient photocurrent

trace measured in As,Ses by Merle Scharfe of Xerox.4

g This anomalous dependence illustrates that in a
system with time-scale invariance there are no intrinsic
transport coefficients. External parameters such as
sample thickness constrain the dynamic response of the
system, and hence these limit the “transport coeffi-
cients”—that is, they become laboratory-time dependent!
The theory embodied in equations 5-7 predicts both
the shape of the transient current and the relation
between this shape and the dependence of the transit time
on the sample thickness and field—namely, that the
values of the exponent 8 determined from the shape and
from the transit-time dependence are the same. This
relationship is a hallmark of dispersive transport.

Experiments and mechanisms

These relationships were dramatically confirmed in a
careful study of the phototransients in a-As,Se; by
Gustave Pfister of Xerox.* Figure 5a is a double logarith-
mic plot of the normalized current traces in one film of a-
As,Se; for a range of transit times encompassing nearly
three decades in time. The shape of I(¢) is scale invariant
(see the discussion in the box on page 30); the curve comes
from the theory with A =0.45. Pfister observed the
dependence of the transit time on the thickness predicted
by equation 7 in these measurements. Below, we will see
this feature with other transients.

All of the above results depend on the algebraic
probability distribution #(¢) given in equation 3. Is this
distribution a reasonable assumption for a disordered
material? Under what conditions and material properties
does it hold? What is the physical significance of the
exponent 8?7 These queries are best addressed by looking
at a simple and commonplace cause of disorder: localized
electronic states in the material that act as traps. In the
case of extensive multiple trapping, where the total time
spent in traps far exceeds the total transit time in the
conduction band, one can heuristically write

YO =3¢ We " ®)

Figure 3

Here ¢; is the probability for capture into the ith trap, and
W; is the release rate from that trap. The distribution in
equation 8 is normalized because 3, &, = 1. If one inserts a
relation between the release rate and the energy ¢ of the

trap (measured from the band edge)
W, = W, exp(— &/kT) 9)

and assumes a broad (say, exponential) distribution p(e) of
these energy levels,

ple) = poexp( — e/ kTy) (10)

then one can show® that equation 3 holds for ¢> 7, the
mean trap capture time, with

L=T/T, (11)

Disorder in the form of a distribution of trap states
promotes a spectrum of intrinsic times that limits the
transport. In this simple example, the spectrum—that is,
the relative release times—is controlled by both the
temperature T and the width T, of the distribution p(e).
The dispersion parameter /3 is simply the ratio of these
controlling factors because the dependence on energy e is
the same in equations 9 and 10. When 7> T, the
weighting of the release times over the entire distribution
is no longer sufficient to allow the rare event (the long re-
lease time) to occur often enough to influence the
accumulated typical release times. In this regime, 8> 1
and <t is finite, so that the transport becomes quasi-
normal, although it is not truly Gaussian until 8> 2.

Intrinsic hydrogenated amorphous silicon provides an
excellent example of the multiple trapping mechanism of
dispersive transport.® The decay of the current in a-Si:H is
purely algebraic for nearly six decades of time (see figure
5b). The two-slope behavior is clearly evident, and the
sum of the slopes is — 2.01. The exponent f is found to
vary as the ratio 7/ 7Ty, as in equation 11, with 7, about 30
meV. The energy kT, has been interpreted to be the width
of the (exponential) conduction-band tail and is in agree-
ment with other determinations of this width.

Hopping involves the tunneling of an electron
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Transiting packet of charge. These
sequences of ‘““snapshots’’ represent packets
of charge transiting a sample, with time
increasing from top to bottom. The normal
transport in a corresponds to linear evolution
in time of the packet’s mean position and
gives rise to the current trace shown by curve
1 of figure 3. In b the packet’s displacement
is controlled by a large dispersion in the
arrival time of the carriers at the far electrode.
The mean position of the packet is a sublinear
function of time and gives rise to the current
trace shown by curve 2 in figure 3. Figure 4

What Happened to the Infinity

If ¥(t) is a probability density whose first moment <t> is
infinite, then how can we write temporal relationships
and avoid this infinity? The answer is, we calculate
moments of P(Lt), the probability of being at site I at
time ¢, and do not calculate the moments of ¥(f) directly.
It can be shown that the mean position () may be
written as

w0 =3 1P =1 (LELU )

ul1 —¢*W)]

Here L~1 is the inverse Laplace transform, I(£) is the
mean step distance, and ¥*(v) is the Laplace transform of
¥(). The manner in which

;

> =J. ty(o) dtl
[0} lim T'— o

diverges induces a scaling law for (). (It diverges as

7'=# when ¢(t)~t="+# for large t, or, conversely,

Y*(w)~1 — u? for small u) We find asymptotically that

the mean position

W ~UE) L=~ "+P)=UE) 1P

The variance from the mean o(t) of P(L,0) is such that
o®/1(t) is a constant, in contrast to o()/It) for a
Gaussian packet, which varies as ¢t~1/2. This lies at the
heart of the shape invariance of normalized I(f) vs
normalized t. Note that <ty = « does not imply that all
the particles wait an infinity of time between hops, so that
there is no motion, just as in the St. Petersburg paradox
not every gambler wins an infinity of coins.
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between localized states. The tunneling rate is a sensitive
function of the intersite distance and energy separation of
these states. The site-to-site variation in these quantities
can result in a wide tunneling-rate spectrum, which can
easily generate the algebraic distribution of equation 3
over an appreciable time range. If the disorder in the
energy separations is negligible, then the exponent 3 can
be weakly dependent on or even independent of the
temperature.

The latter appears to be the case in a recent set of
transient current measurements in the well-studied poly-
meric thin film PVK (polyvinylcarbazole).” Figure 6a
again shows the familiar signature of dispersive transport
in the double logarithmic plot of the current I(¢) in PVK.
The data points in figure 6b are the transit times
measured for samples of various thicknesses. The black
line has a slope of 1/, where /3 is determined by the shape
of I(#) in figure 6a. The observed scaling behavior of the
transit time with thickness is seen to be in agreement with
the prediction of equation 7.

In these measurements the exponent /3 is observed to
be effectively independent of temperature in the experi-
mental range — 10°Cto + 100 °C. As the researchers who
did this exciting measurement state, “This implies that
hole transport in PVK is determined solely by the
geometry of the polymer and not by its energetics.” In
other words, the effects of the variations in the energy
separations on the tunneling rates are negligible.

Silicon dioxide is another important material that
exhibits hole transport characterized® by a temperature-
independent exponent 3. The displacement I(¢) of charge
is manifested in a measurement of the recovery of the shift
in the threshold voltage in the oxide layer of MOS devices
(figure 7a). The scaling of the transit time (slope 1/5) with
oxide thickness seen in figure 7b is in excellent agreement
with the value of 8= 0.25 for the entire three-decade
range of transit times.

Most measurements on both hydrogenated amor-
phous silicon and amorphous chalcogenides are consistent
with S proportional to temperature, except at low
temperatures. Thus excess carrier transport in amor-
phous semiconductors is dominated by the omnipresent
exponential band tails and is independent of the effects of
deep traps.

The great challenge to further theoretical develop-
ment of the microscopic details of dispersive transport is
the problem of hopping in systems with both energy level
spread and stochastic geometry. There are no exact
solutions to this problem, and numerical simulation
results are inconsistent. While hopping is the transport
mechanism in a wide variety of polymeric systems, the
exact nature of the individual charge-transfer steps has
not been resolved.



Transient photocurrents represented in log—
log plots. a: Plot for amorphous As,Se;. Data
points correspond to a superposition of
transients covering nearly three decades of
transit time. (Adapted from G. Pfister, ref. 4.)
b: Plot for intrinsic hydrogenated amorphous
silicon a-Si:H at 160 K. The current is
determined by the sample thickness, applied
field and temperature, and decays
algebraically over the nearly six decades of
observation time of the experiment. (Adapted
from ref. 6.) Figure 5

The simpler problem of multiple trapping has re-
ceived considerable attention. Jaan Noolandi and Fred
Schmidlin of Xerox showed that the conventional set of
coupled kinetic equations describing repeated trapping
and release can be cast into the framework of the
continuous-time random walk, and they derived the exact
form of the probability distribution #(#) for multiple
trapping.® A. Rudenko and V. Arkhipov of the Moscow
Engineering Physics Institute, Thomas Tiedje and Albert
Rose of Exxon, and Joseph Orenstein and his coworkers at
MIT have presented a useful pictorial representation of
the multiple-trapping process based on the idea of a time-
dependent demarcation level.® E. Muller-Horsche and his
coworkers have developed a reliable procedure for extract-
ing rate distributions from photocurrents that requires
measuring the current I(t) over about ten decades of
time.!® Shlesinger has used a particular form of equation
8 to discuss dispersive transport in terms of fractal time,!!
a topic to which we will return later.

On the experimental side, while the materials are
complex and quite varied, and though details of the
transport mechanism remain to be elucidated, the near
universality of the main features of their dispersive
transport attests to the generality of time-scale invariance.

Very recent transport measurements on a wide class
of glassy polymers have revealed'” a current shape that is
“intermediate” between that of curve 1 in figure 3 and
those of the curves in figure 5. The current shows a flat in-
itial transient and a long tail for times exceeding the
transit time. The normal scaling relation, equation 2,
holds for the transit time but not for the variance (see the
box on page 30). These features are qualitatively in accord
with an exponent 3 that is less than 2 but not lessthan 1, a
first moment (¢)> that is finite and a second moment G
that is not.® A suitable distribution p(e) of energy levels
can quantitatively account for these new measurements.'”

Relaxation laws

We focused above on the dispersive transport of a single
charge and the current it generates. In a natural
extension of these ideas, we now consider the dispersive
transport of a collection of mobile defects. This type of
transport can be the basis for a well-known law for
relaxation in a wide variety of random systems.

Peter Debye, with his classic treatment of dielectric
relaxation in fluids, set the framework for much of our
intuition about relaxation. He derived the law governing
how initially aligned small, spherical, dipolar molecules of
radius R and dipole moment u(#) relax in a fluid of
viscosity 7 and temperature T when the external electric
field is removed. The relaxation from an aligned to a
random configuration of dipole moments occurs because of
random collisions with fluid particles. The relaxation
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function ¢(2), defined as {u(t) u(0)>/{pu*0), was calculated
to be exponential: ¢(t) = exp(— t/7), with 7= 47nR/kT.
Thus only a single time scale is needed to characterize the
relaxation process.

Traditionally, analysis of dielectric relaxation in more
complicated systems focused on the complex dielectric
constant e(w) and its deviation from the form derived from
a single relaxation time.'* A change of focus from
frequency to time—from e(w) to ¢(t)—occurred in 1970
when Graham Williams and David Watts'® found empiri-
cally that the following form fit data for glassy and
polymeric materials, including polyethylacrylate and
propylene oxide, with 3 between 0 and 1:

¢(t) = exp[ — (t/7)°] 12)

(Andrez Plonka has made an extensive survey of the role
of this relaxation function ¢(¢) in investigating the time-
dependent reactivity of trapped species in condensed
matter.’) In the past few years this form for ¢(f) has been
used to fit an ever widening variety of experimental data,
including data from mechanical, nmr, dielectric, enthal-
pic, volumetric, dynamic light scattering, magnetic relaxa-
tion and reaction kinetics measurements. It was recently
shown to account for the relaxation of the localized
electronic structure of a-Si:H, which we will describe
below.!5

It was in a study of remnant magnetization that the
expression “stretched exponential” was born to describe
equation 12, and the nomenclature has stuck. The
modern flurry of activity actually obscures the fact that

PHYSICS TODAY  JANUARY 1991 31



107 a s
¢ A 10—
.A *
E toA’%.
g é.o-“ _ 5
O o
a 1 %‘- 8
2 % €
z e oo
(@] oy s 1
z %A =
'_
A =
‘f‘ 2 050
0.1 l | A <
0.01 0.1 1 10 E
SCALED TIME t/t,
0.2—
0.1 | | | L
1 2 5 10 20 50

the stretched exponential was introduced in 1863 to
describe mechanical creep in glassy fibers.'® (See the box
on page 34.)
The stretched exponential was a subject of interest in

the “Brinkman report,” which stated'”:

There seems to be a universal function that slow

relaxations obey. If the system is driven (or normally

fluctuates) out of equilibrium, it returns according to

the formula exp[ — (¢/7)?].... Unfortunately, this is

not a mathematical expression that is frequently

encountered in physics, so little idea exists of what the

underlying mechanisms are.
There are now several derivations of the stretched
exponential for systems in three dimensions, involving
diverse concepts such as percolation, hierarchical relaxa-
tion of constraints, and multipolar interaction transi-
tions.’® We will consider a mechanism based on a reaction
picture involving the dispersive transport of defects.
Although this concept and the others just mentioned are
dissimilar, a common mathematical structure connects
them.®

In the Debye model, the underlying mechanism of

relaxation was fluid particles randomly hitting polar
molecules. Consider now a model for a glass in which
mobile defects hit a frozen-in dipole and instantaneously
cause its relaxation. Sivert Glarum of Bell Laboratories
used a model of this type in which a defect undergoes
Brownian motion in one dimension.?® We generalize
Glarum’s work by allowing for a finite concentration c of
defects in three dimensions and, most importantly, by
treating their motion as dispersive.!! What is the proba-
bility that the “dipole” will first be reached at time ¢ by
one of the N diffusing defects in a volume N/c? Because
each defect moves independently, the probability is a
product of N factors that for large N becomes an
exponential:

¢(t) = exp[ — ¢ S(1)]

Here S(t) is the number of distinct sites a defect visits in a
time ¢.

In three dimensions,
t, for {t) finite
t?, B<1, for {¢> infinite
In one dimension S(#) goes as '/2 for (¢ finite and ¢* for
{t> infinite.

The first case occurs when the mean time {¢) between

S(t)~ {
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THICKNESS d (microns)

Signature of dispersive transport in
polyvinylcarbazole and resulting scaling
behavior of the transit time. a: Superposition
master plot of I(#) obtained at a number of
electric field strengths and temperatures.

The value of the exponent Bis 0.6.

b: Dependence of transit time on sample
thickness. The black line is drawn with slope
1/, where Bis 0.6. The colored line has the
slope of 1 that is expected for normal
transport. (Adapted from ref. 7.) Figure 6

defect hops is finite, and the latter case for dispersive
transport where y(H)~t~*+# B<1. Within the defect
diffusion model, we obtain either Debye relaxation (for
finite {¢)) or stretched-exponential relaxation (for infinite
{t>). In the latter case, any details that do not change the
condition {t)> = « are irrelevant. Thus one answer to the
question of why the stretched exponential is so widespread
is that it can be a probability limit distribution.

The defect diffusion derivation of the stretched
exponential calls for the movement of defects. But what is
a defect? In general, this is a difficult question to answer,
although many possibilities have been suggested for
specific materials. Let us look at two distinct cases. The
first is the practical engineering polymer polycarbonate, a
high-impact thermoplastic resin. It displays ductility in
the glass state, unlike most polymers, which are brittle.
Much speculation has centered on the origin of this plastic
flow, and a variety of solid-state nmr line-shape and
relaxation experiments have provided, for the first time,
structural details of molecular motion in the glass.?' In
particular, carbon-13 and deuterium line-shape measure-
ments reveal that aromatic ring motions occur readily in
the solid, with little or no disturbance of the backbone
direction or orientation. A mobile carbonate (CO;) bond is
considered here to be the ‘“defect” whose movement is
responsible for inducing the mechanical, nmr and dielec-
tric relaxation in this glassy polymer.?? Indeed, all three
types of measurements find stretched-exponential behav-
ior (equation 12), with an exponent 3 of 0.15. (See the
figure in the box on page 34.) The low value of 8 may be
connected to the quasi-one-dimensional motion of the
mobile bond.

The second example comes from a recent study'® of
the relaxation of the nonequilibrium electronic and



atomic structures of doped a-Si:H. In this study, which
has provided considerable evidence for the physical
mechanism we have been discussing, James Kakalios and
his coworkers at Xerox examined the relaxation of the
temperature-dependent densities of dangling bond defects
and donor states in rapidly cooled samples of n-type a-Si:H
(and acceptor states in p-type material), as probed by
monitoring the time dependence of the band-tail states.
They found the relaxation to be well described by a
stretched exponential with exponent B varying linearly
with temperature. (The room temperature value of 3 for
n-type a-Si:H is 0.45.) A good candidate for the diffusing
“defects” that account for the kinetics of the structural
relaxation is the bonded hydrogen. In other studies,
Kakalios and his coworkers have established that the
hydrogen exhibits dispersive diffusion. Moreover, they
have made the important observation that the A(T)
parameter determined from the measurement of hydro-
gen diffusion is entirely consistent with the 5(T) obtained
by fitting the relaxation data to a stretched exponential.

A concluding illustration

The subtlety of dispersive transport involves not only a
broad range of times but the relative probabilities of
events with these times occurring. To illustrate this point,
let us return to our canonical experiment, transport of a
pulse of excess charge across a film of a disordered solid.
Suppose that the spread in arrival times to the back
electrode is due to the stochastic delays introduced by
carrier trapping. If a finite fraction of the pulse can arrive
without being trapped, then one can define a time scale ¢,
for the transit by equation 2, where py is in this case the
band mobility. The trapped fraction of the pulse typically
has a mean release time ty that is greater than ¢, and is
therefore “lost” to the transiting pulse on the time scale of
t,. However, by increasing the probability of an encounter
with the traps (by increasing the trap density, for
example), one can have t; <t,, where ¢,, the time scale of
the measurement, is now the average accumulation of
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release times before arrival at the back electrode, and 4
in equation 2 is now the conventional “drift” mobility.
The “intermediate” situation, where a well-defined time ¢,
becomes blurred, can arise when ¢, is in the midst of a
range of release times. This simple example shows that
besides the range, we must be careful to consider also the
encounter probability.

A special case of equation 8 will clarify the remaining
discussion. Consider a discrete set of trapping levels
indexed by an integer n, such that'!

l1—a

S a"b" exp( — b™) (13)

a n=1

QRS

Here each level n has a power-law weighting (a", a <1) and
a release time (b~ ", b<1). The nondimensional mean
time b{¢> of the distribution given in equation 13 is

bty =122 3 grp-n- (14)
a n=1
For a>b, &t)= o and the asymptotic decay is
Y(t)~t~ P with

_1Ina
B=1rs (15)

which is in the form of a fractal dimension.!' For > a, the
mean time b{¢)> is finite. This example clearly shows the
interplay between a wide range of times {6~ "} and the
probability a” of encountering each of these times. One
can rewrite equation 11 as'®

T  —e/kTy  Inlpe)/pyl

¥ N TEYIA

The form for 3 is the same as for the discrete case in equa-

(16)
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MOS device behavior. a: Recovery of the threshold voltage of a silicon MOS device for a
range of thicknesses. The curve is obtained from theory. The recovery is due to the dispersive
transport of holes across the oxide layer. b: Dependence of transit time on thickness of the
oxide layer in a silicon MOS device. The solid line has a slope of 1/8, where f3 is determined
from the recovery of the threshold voltage of the device. Here Bis 0.25. (Adapted from

ref. 8.) Figure 7

PHYSICS TODAY JANUARY 1991 33



Mechanical Relaxation

When Robert Hooke in 1678 presented his law accord-
ing to which a restoring force is linearly proportional to
elongation, it was appreciated that exceptions existed.
One area where Hooke’s law did not apply was creep
and stress relaxation in solids. In 1829 Vicat, who
surveyed the sagging of wires and the general stability of
suspension bridges across the Rhone, initiated a scientific
study of creep. The problem of the viscoelastic response
of solids has since challenged a number of distinguished
physicists, including Gaspard Gustave de Coriolis,
Claude-Louis-Marie Navier, Karl Friedrich Gauss, Wil-
helm Weber, James Clerk Maxwell and Ludwig Boltz-
mann. In 1854 Rudolf Kohlrausch introduced the
stretched exponential in his study of the loss of charge in
Leyden jars. In his experiments on magnetic forces
around the same time, Weber studied creep in the silk
threads he used to suspend magnetic bars. In 1863
Frederick Kohlrausch (following the experiments of his
father Rudolf and the work of Weber) used the stretched
exponential as an empirical fit for creep and relaxation
data in silk and glass fibers and in rubber.1® As the figure
below indicates, modern experiments on mechanical
behavior, which employ optical birefringence measure-
ments along with the traditional stress-strain measure-
ments, agree well with Frederick Kohlrausch’s findings.

0.8

0.6

0.4

NORMALIZED STRAIN

0.2~

| | | | |
0 1000 2000 3000 4000 5000
TIME (seconds)

Strain recovery in polycarbonate,
measured using birefringence. The data
are fit to a stretched exponential with

S =0.15. (From D. G. LeGrand, W. V.
Olszewski, J. T. Bendler, /. Polym. Sci.
25, 1149, 1987.)

tion 15. The rate range { W(¢)} is determined by the energy
levels, but the density p(¢) of these levels determines the
relative encounter probabilities. Thus dispersive trans-
port arises when these relative encounters decrease at a
rate that is carefully balanced by the increase in the delay
- times—that is, when a > b. This subtlety lies at the heart
of the algebraic behavior of ¢(#). It is also this same
interplay—between the frequency of occurrence of the
various sizes of correlated regions and the sizes of these re-
gions—that accounts? for critical phenomena near 7.
Finally, if we take the limits a—% and b-% in
equation 14, then the mean time b{t)> is simply the
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(diverging) mean winnings of the coin-toss game that gave
rise to the original St. Petersburg paradox.

LI
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