
DISORDER, DYNAMICAL CHAOS
AND STRUCTURES

Systems out of thermodynamic equilibrium exhibit particle-like
excitations that form planetary systems, dislocations in a lattice
of waves or ripples, spatiotemporal disorder and turbulence.

Andrei V. Gaponov-Grekhov and Mikhail I. Robinovich

Science, like life itself, often poses questions whose
answers are so sophisticated and indefinite that one must
either rely on the opinion established by the majority or
refer to some article of "faith" rather than deductive
knowledge. "Where does randomness come from?" "How
does order arise from disorder?" These are perhaps the
oldest questions of this kind. Anyone who has thought
about the principles governing nature has surely faced
such questions. Everyday life, as well as conventional
learning in physics, has almost persuaded us that complex,
irregular and intricate behavior is possible only in very
complex systems and that the study of some of these very
complex systems may be beyond the scope of physical
theory. The vast multitude of molecules in a bottle filled
with gas or a crowd of infuriated fans reacting to the news
that a football match has been canceled suddenly, are both
examples of complex systems. In such systems we usually
fail to relate cause and effect uambigously—that is, we
cannot predict the behavior of the system in detail and
therefore conclude that it is random. Of course, there is al-
ways the hope that it might be possible to eliminate such
seeming randomness and unpredictability if one had more
precise knowledge about the system. Would having a
detailed knowledge of the interaction among the elements
of a complex system and comprehensive and precise
information about their initial states allow one to make
precise predictions about the system's behavior at large
times, so that the system will not appear to be random?
The answer is yes only if one believes in Laplacian
determinism, which was one of the earliest dogmas of
science.
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It was believed until recently that the behavior of
"simple" systems—that is, systems having a small number
of elements (degrees of freedom) and governed by very
simple rules—could only be simple and that only complex
systems showed irregular or random behavior. Such
thinking naturally led to the expectation that stable,
regularly organized structures, especially when they
emerged in spite of the noise and disorder in the medium,
must be caused by some "organizing force" or even by a
"builder." Indeed, highly ordered patterns of clouds or
hexagonal volcanic formations often appear mysterious
and even mystical.

Two remarkable recent discoveries have revolution-
ized our understanding of randomness and order and
overturned centuries-old thinking on their role and origin
in nature. Thanks to the efforts of many physicists and
mathematicians, it became clear in the late 1960s and
early 1970s that simple systems also can give rise to very
complex and even random behavior. It seems that
randomness of a system's behavior, called dynamical
chaos, is inherent to the system, rather than imposed upon
it by the environment or other uncontrolled forces: It
cannot be removed by a better understanding of any part
or aspect of the system.' -2 A simple example of such chaos
is the disordered, large-amplitude motion of a pendulum
under the action of a harmonic driving force.3

At about the same time as the discovery of dynamical
chaos there emerged the realization, verified in numerous
experiments, that organized regular structures may ap-
pear spontaneously from disordered initial states in
systems far from thermodynamic equilibrium. As the
degree of nonequilibrium increases, the structures evolve
into more and more complicated states. One of the earliest
and most widely known examples of this behavior is the
generation of structures in the form of regular lattices
with hexagonal cells at the onset of Benard-Marangoni
convection (see figure I).4 In Benard-Marangoni convec-
tion, a planar layer of a fluid is heated from below, so that

30 PHYSICS TODAY JULY 1990 © .1990 American Insriirure of Physics



both the surface tension and the viscosity of the fluid are
important parameters. (In the more familiar, Rayleigh-
Benard convection, by contrast, the fluid is enclosed
between two plates, so that there is no free surface and the
value of the surface tension is not relevant to the
convective behavior.)

Order and chaos are usually regarded as antithetical
concepts. In nature, however, chaos and structures
showing a high degree of spatiotemporal order coexist.
The presence of ordered structures in highly turbulent
flows is an example. Indeed, chaos and ordered structure
arise from the same sort of nonlinear laws and are often in-
separable. Therefore in most situations it is natural to
refer not to the presence or absence of chaos or order but
rather to the degree of order or chaos. In this article, we
will limit ourselves to a discussion of spatiotemporal
structures. (We will not discuss hard turbulence per se,
which is also sometimes called spatiotemporal chaos,
which is not quite exact. For a discussion of hard
turbulence, we recommend the excellent, comprehensive

Evolution of a hexagonal lattice of Benard-
Marangoni convection cells in a horizontal
layer of silicone oil heated from below. The
rate of heat input was slightly above the
critical value for the onset of convection. The
cell edges are on the order of a few
millimeters long. The pictures, obtained by
photographing light reflected from the fluid
surface, were taken about 30 sec apart and
show the emergence of ordered cells
after the onset of convection. (Courtesy
of Alexander B. Ezersky.) Figure 1

article by Stephen Orszag and Uriel Frisch in PHYSICS
TODAY, January, page 24.)

Order in dynamical chaos
Figure 2 shows the lacy structure of a turbulent boundary
layer visualized by blowing smoke on the wall of a rotating
cone. Both the time dependence of the velocity at a point
in the boundary layer (measured, for example, by a hot-
wire anemometer) and the distribution of velocity at
different points in the layer show no apparent order. Yet
the lacy structure is enchantingly beautiful and produces
a visceral impression of regularity. There is order in
chaos! The degree of this type of order can be determined
quantitatively and measured in a variety of processes,
such as irregular cardiac beats, turbulent water flows and
current pulses in a Josephson junction. The degree of
order in chaos is generally expressed in terms of a fractal
dimension or entropy.5 6.

The chaos established in such simple situations as a
resonator field, thermal convection or Couette-Taylor
flow sets in at a critical value of some control parameter,
such as the temperature difference between the plates of a
Rayleigh-Benard cell. At the critical value the behavior
of the modes describing the dynamics becomes chaotic. As
a rule only a few spatially periodic elementary excitations,
similar to harmonic waves, actively participate in such
processes. They exchange energy with one another or
with a nonequilibrium medium irregularly in time. Thus
the chaos in the medium or in the field is temporal. As the
control parameter increases beyond the critical value, the
number of interacting (linear) modes increases rapidly and
the spatial regularity of the field describing the flow is
destroyed. A most significant feature of this process is the
generation of spatial structures, which are the coherent
states of the field—the result of coherent interactions of
infinite or many numbers of linear modes. Among these
structures may be counted defects in the ordered arrange-
ment of convective cells in a fluid layer, Langmuir solitons
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Turbulent boundary layer forms as smoke
flows over a rotating cone. The flow develops
a lacy structure and further downstream
shows an irregular structure of vortices. (From
R. Kobayashi, Y. Kohama, M. Kurosawa,/
Fluid Mech. 127, 253, 1983.) Figure 2

in a plasma, and coherent vortices in a shear flow. Such
structures are localized in space and may have their own
temporal dynamics. They may form bound states or walk
randomly in space. They may be stable or metastable.
The only important feature they must have—the one to
which they owe their existence—is that they must be long-
lived on the time scale of the elementary modes of the
system.

An important factor that allows us to pass over from
the description of continuous fields (velocity temperature
and others to the analysis of the dynamics of discrete
elements (structures) is the small value of the parameter
fi, which is the ratio of the value of the field of theyth struc-
ture at the center of mass of the jth structure to the value
of the field of the ith structure at its own center of mass.
The smallness of this parameter suggests that the
structures are not very dense or that the interactions
between them are small.

The theory of ordered structures starts from the
assumptions that there exist localized states of nonlinear
fields and that those states are stable and robust. A one-di-
mensional soliton is an example of such a stable structure.

In the case of multidimensional fields (or media), however,
we face an extremely difficult and challenging problem,
namely, determining whether equations of classical fields
have stable, particle-like solutions. Very few examples of
such solutions are known.

Note that for the explanation of some phenomena
related to evolution and the birth of structures, it is
essential to take into account the noise and fluctuations
that can never be eliminated from any experiment. This
means that the dynamical equations must be corrected by
the addition of terms that describe the sources of the noise
and fluctuations relevant to the experiment. Systems
whose behavior is in some way affected by noise are called
stochastic. Studies of the spatiotemporal behavior of the
localized structures of stochastic nonlinear fields present
several interesting problems. Localized defects on inter-
faces or surfaces, vortices in superfluid helium, and large
coherent structures in turbulent flows are all examples of
localized structures in stochastic systems. We wiil not
discuss stochastic nonlinear systems in this article; the
interested reader may consult references 7 and 8.

Localized states of nonlinear fields
Stable, localized states of nonlinear fields are of great
interest in various branches of physics and astrophysics.
Einstein was the first to propose that elementary particles
may be regarded as localized states of nonlinear fields.
Heisenberg had a similar point of view. The localized
structures of gravitating gas clouds are associated with
galaxies, clusters of galaxies, and other formations.
Localized charge density waves are interesting for super-
conductivity. The large eddies of cold water that break
through the Gulf Stream boundary layer into the lower
Atlantic are stable localized structures in the ocean, and
the blocking highs (blocking events—anticyclones in the
atmosphere), which give Europe wonderful summers, such
as those of 1976 and 1989, are examples of such structures
in the atmosphere.

It should be emphasized that the localized states may
set a size on the background structured medium. These
are envelope structure defects. Figure 3 shows one such
structure.9 When a fluid layer is subjected to vibrations in
a gravitational field, its free surface breaks into Faraday
ripples. (The phenomenon is named after Michael Fara-
day, who described it over 160 years ago.10) As the
sequence in figure 3 shows, an absolutely regular lattice of
square cells exists for a range of values of the amplitude of
vibration, but several complicated structures and defects
appear in the lattice as the amplitude increases beyond
that range. In general, defects in periodic lattices are
examples of localized structures. They move, usually
chaotically, and interact with one another. The chaotic
spatiotemporal dynamics of defects can be regarded as an
aspect of turbulence.11
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Spatiotemporal structures in Faraday ripples. Capillary waves were excited in a 10-mm-deep layer of silicone
by oscillating it vertically (in a gravitational field) at 140 Hz. A periodic modulation appeared in the
background lattice of the capillary waves. Increasingly complicated spatiotemporal structures appear with
further increases in the amplitude. (Courtesy of A. B. Ezersky) Figure 3

The defects not only move and interact, they also
collapse and split. Their number may change with time,
but suitably defined time averages of the number of
defects depend only on the degree of nonequilibrium of the
medium. The number of defects in the background of
Faraday ripples increases with the pumping amplitude, as
shown in figure 3. In fluids, the number of defects
increases with increasing Reynolds number. This result
about the number of defects appears to be quite general.
In particular, L. Fil, G. Lega and G.L. Meunier studied,12

in a numerical experiment on a Cray-2 supercomputer,
fluctuations in the number of defects in the framework of
a two-dimensional Ginzburg-Landau equation with com-
plex coefficients (similar to equation (11)). They found
that not only are the trajectories of the defects (or localized
structures) random, but so is their number! And all these
features arise in a purely dynamical system, one not
subjected to any fluctations or external noise.

The laws of defect interaction are quite universal.
The topology of defects and the dynamics of their
appearance or disappearance are very much the same for
Faraday ripples and for structures seen when convection
is induced by a thermal gradient in a fluid or by electric
forces in liquid crystals (see for example reference 13).

When constructing a theory of spatiotemporal struc-
tures, it is natural to distinguish between two radically
different situations: In the first case, the localized states
of a nonlinear field interact weakly, retaining their
individuality; in the second, the interaction is strong, so
that a region may alternate between being normal and
being structured (that is, structures appear and disap-

pear). We are interested here primarily in the spatiotem-
poral dynamics of weakly interacting structures. A rather
effective, albeit only asymptotic (and hence approximate),
theory can be constructed for the description of such
structures. The theory allows the very attractive possibil-
ity of passing from continuous models (involving partial
nonlinear differential equations) to discrete equations for
localized structures or their ensembles.

Localized structures in conservative and dissipative
fields may be considered in parallel for a significant class
of nonlinear fields, namely, potential fields. It is these
fields that we shall be concerned with in this section.

In the 1970s remarkable advances in studies of soliton
solutions in one-dimensional theories aroused enthusiasm
and stimulated active search for solitons and dissipative
localized structures in two- and three-dimensional theo-
ries as well. It appeared, however, that two- and three-
dimensional soliton solutions in nonlinear field models
are, as a rule, unstable. For example, for some field
variable u(x,t) whose dynamics are given by the model
equation

dt2 - V2u+f(u) = \ (1)

(where /"is some potential function), the localized states,
according to the so-called Derrick-Hobbarth theorem,
spread out in two and three dimensions. How can this
model be modified so that the "particles" (localized states)
become stable?

One of the reasons for the lack of stability of the
localized states of equation 1 is that the model has no
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universal spatial scale. The characteristic scale of parti-
cles is determined by the magnitude of the nonlinear term
in f, usually a quadratic term, which also sets the scale for
the particle mass. The spatial dispersion (or the existence
of an intrinsic, independent length scale in the medium or
field) is likely to lead to the "universalization" of the
parameters of static particles and thereby prevent their
spreading. A necessary condition for particle stability is
that the minimum of the potential energy density occurs
at the centers of localized states of interest.

Thus the search for stable structures is the determina-
tion, based on symmetry requirements, of different types
of invariances of the localized field states that would
minimize the potential energy or the free energy F.

We shall restrict our consideration to very simple
models of scalar and isotropic fields. The energy density
y (F = JJ/^dr) can be represented in the form of a power
series in the field and its gradient close to a trivial
homogeneous state (for isotropic fields):

yt = au2 + /3u3 + yu" + £(Vu)2

+ C(V2u)2 + • • • (2)

Similar series expansions can be written for complex
scalar fields, except that the powers of the field are
replaced by the powers of the field modulus, so that the
free energy remains real. The terms proportional to V2

take into account spatial dispersion of the field. We can
obtain an equation for the field distribution realized in a
static structure by setting the variation of F relative to u
(or u* in case of complex fields) equal to zero:

SF
Su*

= 0 (3)

It is instructive to recall here the simple analogy of a
ball moving down the rough bottom of a bath. When the
bath is filled with a highly viscous fluid the ball, moving
under the potential force (gravity) and the frictional force,
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Schematic free energy functional of a
nonlinear field u(r,t). Three types of minima
are indicated: A minimum in which the value
of the field is 0 at all points in space (green),
one in which the field is nonzero at some
localized set of points (gray) and one in
which the field has a nonzero constant value
everywhere (blue). Figure 4

slides down gradually and comes to a stop in one of the
nearest pits. This process is described by a gradient
equation:

du_
dt du

(4)

When by contrast, the ball moves down the same rough
surface, because of the same potential force but in the
absence of any viscous liquid, it does not sit still at the bot-
tom of the pit but oscillates about it. Next, if we place the
ball at the bottom of the pit and do not impart to it any (ini-
tial) velocity, it stays in that position forever. In the
absence of viscosity the motion of the ball is described by a
second-order equation of the form

d'u
df

dF_
du

(5)

Clearly the stable equilibrium in systems (4) and (5),
corresponding to the minimum of F, is identical regardless
of the presence of the viscous fluid. The only difference is
tha t the dissipative system finds these minima by itself for
arbi t rary initial conditions, while in the purely potential
case (equation 5), one must guess or calculate the minima
by some means and then leave the system in one of them.

Our analogy, however good or interesting, tu rns out to
be not so complete when we consider the stability of
particle-like states of nonlinear fields. A solid ball has no
intrinsic degrees of freedom, and therefore the necessary
condition for the stability of a potential energy minimum
is at the same time a sufficient condition. The situation is
different with respect to localized field structures. Such
structures typically have intrinsic excitations, which, as a
result of nonlinear interactions, may remove energy from
the ground state and make it unstable.

When we supplement equation 3 with a term similar
to tha t in equation 5 to describe the field "inert ia ," we ob-
tain a model equation of the form

_
SF
Su

= - (kf, + V2fu - u(l -/3u + u2) (6)

for a real scalar field. (We can similarly add inertia terms
to the equivalent of equation 2 for complex fields.) The
parameter k0 defines a universal spatial scale typical of all
inhomogeneous static states of the field u.

The similarity of the model equation 6 to equation 5
means that the polynomial terms in the field u or its
derivatives may be obtained by minimizing some potential
(or free-energy functional). The model defined by equation
6 can be related to the dissipative models, defined by

du_
dt

SF_
Su

(7)

The value of the free energy may only decrease in t ime in
all solutions of equation 7. This is because

dt '
dr < 0 (8)

Thus, as £— oo the solutions of equation 7 must converge
only to stable equilibrium states corresponding to the
minimum of the free energy, just as in our analogy of the
ball moving down a bath filled with a viscous fluid. One

3 4 PHYSICS TODAY JULY 1990



says that the minima of the free energy are static
attractors of the dynamics in phase space. There may be a
great number of equilibrium states, a case usually referred
to as multistability, and the corresponding spatial field
distributions may be either regular, as in the Benard cells,
or almost regular with several defects, as in the Faraday
ripples at large amplitude shown in figure 3.

For a dissipative medium modeled by an equation of
the type denned by equation 7, the possibility of localized
structures arises from the coexistence of more than one
homogeneous stable state for a range of values of the
control parameter. This is illustrated in figure 4. As
discussed above, every homogeneous stable state of the
medium corresponds to a minimum of the free energy.
One such minimum occurs at u = 0. It is natural to
assume that under suitable conditions the free-energy
functional may have other minima that correspond to
spatial configurations that are localized in space. In a
system possessing spatial dispersion, described in equation
6 by the V4 term, the mimina corresponding to localized
structures are indeed stable, as indicated in figure 5.

Our goal is to find stable particle-like states among
the equilibrium states. Apparently the field configura-
tions in nondissipative models such as those described by
equation 6 depend critically on initial conditions, and it is
impossible to guess the field distributions corresponding to
stable particles. The gradient models given by equation 7,
whose equilibrium states are identical to those of equation
6, may be of use in this context, because the dissipative sys-
tem itself converges to the equilibrium states.

In a two-dimensional geometry, stable localized
states of a nonlinear field described by an equation similar
to equation 7 are shaped like disks; the field oscillates, the
amplitude of the oscillation decreasing exponentially with
the distance from the core so that it becomes zero at
infinity. Figure 5 shows localized states of a real field
found in three dimensions in a dissipative model.

Localized states exist also for complex fields. These
states are shaped like spiral waves in two dimensions and
toroidal scrolls in three dimensions. Complex fields also
exhibit localized structures that are long-lived but meta-
stable.

Bound states and chaos
In contrast to the power-law decay of the fields of classical
solitons, the fields of stable localized structures—obtained
by solving equations of the type 6, for example—decay
exponentially with the distance from the point of the field
maximum, in an oscillatory fashion. The oscillations are
evidently one of the manifestations of the spatial disper-
sion of the fields, which, as noted earlier, is needed to
obtain stable localized structures.

Because of the exponential decay with distance, the
fields at the periphery of a localized structure are weak, so
that the fields of two structures overlap only slightly when
they are far apart and the interaction between them is
weak. As a result, the parameter /n, defined earlier, is
small. We may exploit this fact when trying to describe the
dynamics of localized structures and to pass from the
continuous models to equations of motion for the mass
centers of the structures, which from now on we shall call
particles. These equations are similar to the equations of
Newtonian mechanics. In particular, for centrosymme-

Spatially localized configurations of a three-
dimensional nonlinear field: a "ball," a
"torus" and a "baseball." (Adapted from
ref. 14) Figure 5

trie localized structures in a dissipative model, we obtain
the system of equations14

dt
= f.l\ro.-rOj\

ru, -
(9)

Here r,,, is the coordinate of the ith particle and
f, (|rn, — rn, |) is the force, which depends on the spatial
distribution of the field in the "tails" of the structures.

When we pass from the continuous equations for the
fields to discrete equations for their particle-like states, we
must solve a problem that is in a certain sense the
converse of the traditional one in elementary-particle
physics. In our problem, we must separate out particles
from the field equations and determine the forces that
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Bound states of stable spatially
localized states, or "elementary"

particles, in a dissipative model of a
nonlinear field. All of the localized

states shown in figure 5 form bound
states. (Adapted from ref. 14.) Figure 6

govern the interaction of the particles in one another's
potential fields. This procedure, intricate as it is, has its
rewards: Instead of the rather cumbersome nonlinear
field equations, we can use the much simpler and more
conventional equations of mechanics.

Although the particles obtained within the Hamilto-
nian and the corresponding dissipative models are identi-
cal, the dynamics of potential and dissipative particles are
qualitatively different, just as they were in the analogy we
discussed. The particles described by dissipative models
move spontaneously, come to a stop and form bound states
of clusters (see figure 6). Because of the oscillatory tails of
individual particles, the bound states may include an
arbitrary number of localized structures. The bound
states correspond to equilibrium in the system given by
equation 9 and have various spatial configurations: They
may be regular or irregular chains of structures, lattices
(in particular, quasiperiodic lattices), clusters with defects
of different types and so on.

The structures of the Hamiltonian fields behave in a
different fashion. In particular, for the field described by
equation 5 instead of equation 9 we have

dr0,
dt

= V,

dV,
At

(10)

The equilibrium states here are of course the same as in
equation 9, but they are no longer attractors. Instead, the
structures may rotate and vibrate about configurations
close to those of the equilibrium states. Like the equations
of the Hamiltonian mechanics, the set of equations 10
describes, in particular, the planetary rotation of the
particles relative to each other. The difference between
this new, fascinating world and the Newtonian one lies in
the interaction potential between objects. In this world
the particles may attract or repel one another. There may
also exist infinitely many orbits, corresponding to the
infinitely many minima in the interaction potential

between structures. Here we can draw analogies with the
discrete levels of quantum systems, but that discussion is
beyond the scope of this article. Let us, however, remind
ourselves that our particles arise from complicated field
configurations, and let us pause to imagine that the
dynamics of these particles can indeed cause mixing and
randomness in the medium.

Stochastic dynamics of ensembles of structures
Direct computer experiments on a nonlinear complex field
described by an equation similar to the complex counter-
part of equation 6 have confirmed the results briefly
mentioned above about the asymptotic behavior of the
dynamics of localized structures. Similar results were
obtained earlier for other models.15

Computer visualization of the random motion of
particles and the accompanying changes it causes in the
medium convinces even inveterate skeptics that the origin
of spatiotemporal disorder in nonlinear media (or fields)
can be understood in the context of simple models for the
dynamics of the medium.

Our particle-like structures have intrinsic degrees of
freedom. Excitations in the boundary-layer vortices in
figure 2 or amplitude and phase oscillations in the
capillary cell in figure 3 are examples of the intrinsic
degrees of freedom. As we saw in figure 3, the structures
themselves may show spatiotemporal disorder. It is
therefore useful to study ensembles of structures. If the
structures form a regular lattice, for example, the
spatiotemporal disorder is a random walk of excitations
that represent the change in the states of the elements in
the lattice. When constructing a theory of the chaos in
spatiotemporal structures, it is convenient to employ
amplitude equations that describe, for example, the
dynamics of the amplitude of a complex field in time and
space. This class of equations includes the equation
describing modulation waves on a background of capillary
ripples,7 as well as the potential models described by
equations 6 and 7, which are generalizations of the well-
known Ginzburg-Landau model.
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Solution of equation 11 for a lattice of
64x64 points with ji = c = -JJ and K~5.
Color indicates modulus of the amplitude of
the complex field. (Adapted from
ref. 15.) Figure 7

Consider as an illustration the processes described by
a lattice analog of a traditional Ginzburg-Landau equa-
tion:16

dt

,_!,, -4a, ,) (11)

where l,j= 1,2,... ,iVanda/JU)=a, + N,J + NW isacomplex
amplitude for the Z/'th element of the lattice. This model
permits investigation of the structure of spatiotemporal
chaos (see figure 7). Calculations show that new elemen-
tary excitations appear in the system as 1/K, which
measures the degree of nonequilibrium in the system,
increases. For small values of 1/K, the interaction
between the excitations gives rise to regular modulation
lattices, which are described by superpositions of mutually
orthogonal standing waves. But as 1/K grows, spiral
modulation waves appear whose field intensity is zero at
the center and rapidly acquires a constant value at the
periphery. Next the number of structures—spirals, two-
dimensional vortices and so on—grows, and they begin to
move randomly over the lattice, producing chaos.

If the chaos is assumed to be spatially homogeneous
(when suitably averaged over time), it can be described
quantitatively using the concepts of the Kolmogorov-Sinai

" 5 dilentropy,1-5"5 which characterizes the degree of dynamical — <
disorder, and the fractal dimension.516 The fractal
dimension is, in some sense, an estimate of the number of
effective degrees of freedom that take part in the onset of
chaos. It should be noted that the fractal dimension in
chaos is usually much lower than the total number of
excited linear modes. This again proves that many
nonlinear modes are synchronized and form clusters. (The
clusters correspond to nonlinear structures in the spatio-
temporal representation.) It is the number of individual
clusters corresponding to new "nonlinear modes" that
determines the fractal dimension.

Self-generation of chaos downstream
We now turn to shear flows, to examine whether the
concept of chaos in spatiotemporal structures is useful for
the description of turbulence in fluid flows. Hydro-
dynamical experiments, with their remarkable ability to
be visualized (see figure 2), encourage the construction of
models involving spatiotemporal structures for describing
turbulence.

In many shear flows a regular flow is converted to a
turbulent one after a series of transformations along the
flow. These so-called spatial bifurcations correspond to
the birth and amplification downstream of new excitations
or degrees of freedom of the flow. The spectrum of these
excitations is essentially continuous. An analytic descrip-
tion of such a process is beyond our current capabilities. It
is understood, however, that the nonlinear evolution of the
primary instability in the flow generally leads to the
formation of structures similar to the vortices in figure 2.
As a result, the subsequent evolution of the flow can be
considered as the transformation of excitations in the
chain of structures as those excitations act on one another
consecutively.

A phenomenological model describing the nonlinear
dynamics of a flow having structures, labeled by j and
having transverse coordinates y, arranged in one direction
is given by17

du,
dyr

(12)

where j =1 ,2 Here y is a measure of the interaction
between neighboring structures, K is a diffusion coefficient
and <j> is some (polynomial) function. For flow systems
yi>K. The left-hand side of the equation describes the
intrinsic spatiotemporal dynamics of an individual struc-
ture while the right-hand side describes the interaction
between the structures. In most cases, the feedback
"upstream," given by the term proportional to K, can be
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Fractal dimension at points in a boundary
layer of a flow excited by a vibrating ribbon in
a wind tunnel. The fractal dimension was
obtained from the time series for the velocity,
which was measured by a hot-wire
anemometer. The increase in fractal
dimension downstream from the vibrating
ribbon indicates the increasing complexity of
the flow. (Adapted from ref. 18.) Figure 8

considered as the perturbation. Equation 12 must be
supplemented with boundary conditions. In the discus-
sion below we shall assume that un(t) = Ae'"lt, which
corresponds to the time-periodic excitation of the flow.

When diffusion is neglected (K = 0), the problem of the
origin of spatiotemporal chaos along the flow reduces to
determining whether a strange attractor appears in the
phase space of the chain of elements. A flow having
discrete structural elements typically has spatially inho-
mogeneous steady-state solutions. When such solutions
are stable, chaos does not set in downstream and the flow
continues to be laminar. If for some j* the solution
becomes unstable, then for j>j* a more complicated
dynamics is established that generally has a higher
dimension. The new dynamics which may be, quasiperio-
dic, for example, may itself become unstable for some,/**,
and this process may continue, with increasingly more
complicated dynamics appearing downstream, until chaos
sets in at some j c r . Strictly speaking, this means that in
the phase space of the system comprising j>jcr dynamic
elements, there exists (under the specified boundary
conditions) a stochastic limiting set—a strange attractor.

By changing the dynamical properties of the point
elements of the medium, we can describe different
scenarios for the spatial evolution of turbulence—through
period doubling, quasiperiodicity, intermittency and so on.

In our theory the evolution of chaos downstream
corresponds also to the growth of the fractal dimension of
the time series (for some variable, such as the velocity)
along the coordinates. This is shown in figure 8 for the
fractal dimension of a real boundary layer near a plate.

Does the fractal dimension continue to increase as one
moves downstream? How is it related to the Reynolds
number? To the number of structures in a turbulent flow?
Answers to these and other questions in the theory of
turbulence must await further studies (see, for example,
reference 19).

We thank Jerry Gollub and Alan Newell for a careful reading of
the manuscript and for valuable comments.
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