

A few years later Thouless began working on the phase transitions of the two-dimensional "x-y model," a planar array of magnetic vectors free to rotate only in their plane. (This model represents such systems as thin superconducting films and liquid helium films.) He identified spin vortices as the objects whose interactions would very likely determine the phase transitions.

Thouless suspected that the x-v model might admit the same sort of renormalization-group techniques that Philip Anderson, Gideon Yuval and Donald Hamann had used recently in their work on Kondo alloys. The three had shown that a Kondo alloy was, for certain puposes, equivalent to a one-dimensional strip of "charges" whose interaction energy varies as the logarithm of their separation distance. Having found that a vortex pair in the x-y model also behaves logarithmically, Thouless wished to further explore the analogy between the two problems; for this project he enlisted the help of J. Michael Kosterlitz, a postdoctoral fellow in highenergy physics. The renormalizationgroup analysis yielded some of the first specific predictions about the phase transition in the x-y model-in particular, the prediction that the transition would be accompanied by a discrete drop in superfluid density (see Physics today, August 1978, page Later, Kosterlitz applied a somewhat more sophisticated renormalization argument, which gave a number of more quantitative predictions. (V. L. Berezinskii of the Soviet Union had made considerable progress on the same problem roughly a year earlier.)

Much of Thouless's work in the 1970s was directed toward the problem of electron localization in disordered systems, a phenomenon that had been predicted much earlier by Anderson, Nevill Mott and Rolf Landauer but was still poorly understood. Today. Thouless's ideas on the topic underlie the whole field of mesoscopic systems. His work emphasized the key roles played by the conductance measured as a multiple of e^2/h and by the suppression of inelastic scattering at very low temperatures. One of the most dramatic predictions was that the resistance of a very thin wire would increase exponentially with its length at sufficiently low temperatures.

While working on spin glasses, Thouless, together with Jairo de Almeida, arrived at the conclusion that the mean-field-theory model of spin glasses would exhibit a phase transition at a certain curve in the magnetic field-temperature plane—the socalled Almeida-Thouless line. An earlier paper, by Thouless, Anderson and Richard Palmer, has also been the basis for some significant recent developments.

When he left Birmingham in 1978, Thouless became a professor of applied science at Yale. He left Yale in 1980 to become a physics professor at the University of Washington. Much of Thouless's work at Washington has centered on topological quantum numbers, particularly those found in the quantum Hall effect.

-MATT SIEGEL

AUSTON WINS AWARD FOR WORK IN ULTRAFAST OPTICS

David H. Auston of Columbia University has won this year's Quantum Electronics Award of the IEEE/Lasers and Electro-Optics Society. The award, presented on 21 May at a joint session of the Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, was made in recognition of Auston's "pioneering and fundamental contributions to the field of picosecond optoelectronics and ultrafast optical phenomena."

In 1975 Auston demonstrated that picosecond light pulses could be used to activate photoconductive switches and gates in electrical circuits; this work helped lay the foundations of the now-rich research area of picosecond optoelectronics. In 1984 he introduced pulses as short as a few femtoseconds into electro-optic materials to induce in the crystal a conical electromagnetic shock wave (electro-optic Čerenkov radiation), which Austonical

David H. Auston

WE HEAR THAT

ton used to probe the electronic structure of semiconductors (see PHYSICS TODAY, February, page 46). More recently Auston has been working on a different means of transforming optical pulses into electronic signals, namely, photoconducting antennas.

Auston received both his BASc (1962) and his MASc (1963) from the University of Toronto, and got his PhD (1969) in electrical engineering from the University of California at Berkeley. After graduate school, he joined the technical staff at AT&T Bell Laboratories, where he eventually became head of the high-speed materials and phenomena research department. Since 1987 Auston has been a professor of electrical engineering and of applied physics at Columbia.

IN BRIEF

Jack Crow, a condensed matter experimenter, has left his professorship at Temple University in Philadelphia to become a professor of physics and director of the Center for Materials Research and Technology at Florida State University in Tallahassee.


OBITUARIES

Stephen B. Fels

Stephen B. Fels, a senior research physicist at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory, died on 22 October 1989 after a courageous struggle against cancer. As one of the world's pioneers in the mathematical modeling of atmospheric radiative-transfer processes, Fels had contributed to more accurate weather forecasting and better modeling of the impact of the greenhouse gases on Earth's climate. His published papers span particle physics, geophysics, planetary atmospheres, atmospheric dynamics and radiative

Fels completed both undergraduate and graduate work at Harvard University, earning his PhD in physics in 1967. After spending four years doing high-energy theory at the University of California, Los Angeles, Fels received a fellowship to switch to atmospheric physics. In 1971 he split his time between the department of geophysical sciences of the University of Chicago and the National Center for Atmospheric Research in Boulder, Colorado. In 1972, he became a visiting scientist in Princeton University's Geophysical Fluid Dynamics Program (now called the Program in

Can your PC do this?

It can if you have PLOT88, unrivaled C & FORTRAN graphics library for today's programmers

Call (619) 457-5090 today

PLOTWORKS, Inc. Department P-18

16440 Eagles Crest Rd., Ramona, CA 92065 U.S.A.

Circle number 55 on Reader Service Card

INTRODUCING TWO OUTSTANDING SOFTWARE PACKAGES THAT WILL CHANGE THE WAY YOU WORK!

EXP: The Scientific Word— Processor, Version 2.0 Simon L. Smith

Preparing technical documents has never been easier!

EXP is a complete word processing system for the IBMPC and compatibles that allows you to see all text, fonts, technical symbols, and graphics on the screen just as they will appear when printed without the need for a "page preview" mode. Includes all features standard to word processing programs plus the ability to:

- · Import bit-mapped graphics
- · Use U.S./U.K. spelling checker
- Export EXP-created formulas to desktop publishing programs
- Automatically size and center radical signs, parentheses, brackets, etc.
- Automatically italicize variables
- Automatically number equations
 These features and more make EXP
 the fastest and truest "WYSIWYG"
 scientific word processor available.
 ISBN 0-534-11970-0

-\$295

Symbolic Computation Group, University of Waterloo, Ontario, Canada

Requires only one megabyte!

Put Maple's speed, reliability, and power to work on any Macintosh—even the Mac Plus. Maple combines algebraic and numerical computation with two-dimensional graphics to give you more power per dollar than any other symbolic processing software.

Maple comes with a unique library of more than 1500 built-in functions, including operations on integers, rational numbers, polynomials, symbolic and numeric approximation, statistics, linear algebra, calculus, differential equations, and more. And, Maple can be customized to reflect your research or computational needs.

ISBN 0-534-10224-7

\$395 -For order information or for a demo disk, call Wadsworth Corporate Marketing 800-831-6996. In CA 800-367-1977.

For technical information call Brooks/Cole Publishing Co. 408-373-0728

Circle number 56 on Reader Service Card

93