THE PHYSICS OF BEAMS: PAST, PRESENT, FUTURE

Andrew M. Sessler

Last November The American Physical Society established the division of physics of beams (see Physics Today, April, page 89). Why was this action taken? What are its implications?

The division was created in recognition of the growing importance of photon and particle beam physics. This new division does not correspond to the traditional fields of physics, such as mechanics or electricity and magnetism, or even to newer areas, such as atomic and molecular, nuclear, or particles and fields. But like these other areas, beam physics is challenging in both its practice and its intellectual content. I think the formation of the new division is indicative of how the present state of physics differs from the past. It used to be that physicists would dabble in a number of disciplines. Now, many physicists devote their entire careers to beam research.

The study of particle beams began in 1897 with J. J. Thomson's discovery of the electron. Other important early work included that of P. Lenard, who studied magnetic deflection and electrostatic properties of particle beams, then called cathode rays. One of the first applications of ion beams, and a dramatic one at that, was the α -scattering work by E. Rutherford in 1911, which established our picture of atoms.

Early interest in photon beams can reasonably be traced back to W. C. Röntgen's 1895 discovery of x rays. Also important was the discovery of the quantization of light—the photoelectric effect—which grew out of Lenard's work and was later explained by A. Einstein in 1905. Subse-

Andrew Sessler is an accelerator physicist at, and former director of, Lawrence Berkeley Laboratory. He is chairman of The American Physical Society's division of physics of beams.

quently, very detailed experimental work on the photoelectric effect was done by R. Millikan.

The acceleration of beams was first achieved in the early 1930s by J. D. Cockcroft and E. T. S. Walton and by R. J. Van de Graaff, who built highvoltage dc machines. Of course, the energy of the beams was limited by the voltages that these early devices could sustain. Later, E. O. Lawrence, R. Wideroe and L. W. Alvarez developed resonant accelerators, in both circular and linear forms, which overcame the limitation inherent in dc machines. To properly build such devices, the focusing of particles, both longitudinally and transversely, had to be achieved. Many researchers in the 1940s contributed to this effort. including E. M. McMillan and V. I. Veksler, whose pioneering work on longitudinal focusing made synchrotrons possible.

In the early 1950s, Nicholas C. Christofilos and, independently, Ernest D. Courant, M. Stanley Livingston and Hartland S. Snyder invented strong focusing. From a theoretical point of view, their work was a general analysis of focusing. But from an experimental point of view, it provided the means to design, build and operate a multitude of different devices. In the 1960s researchers found that high-current beams could be stacked and stored, which enabled them to build high-energy colliding beam devices.

In the last two decades, a whole field of physics based on beams has developed. Our present ability to manipulate particles—in circular and linear colliders, in storage-ring photon factories, in neutral beam sources, in ion-traps and so on—is incredible. Today's achievements go far beyond even the dreams of early beam physicists. A century ago, who would have dreamt that particles could be held in storage rings for days (corresponding to astronomical distances of light

days)? Or that currents of megamps could be transported over many meters? Or that intense beams of several microns diameter could be brought into collision?

Our ability to manipulate particles has grown out of our understanding of single-particle (linear and nonlinear) and collective phenomena. In fact, beam physicists are not just "users" of knowledge generated in other fields, but discoverers and creators in their own right. Beam systems serve as incomparable laboratories, being excellent for experimental work and exceptionally amenable to analytic and numerical study, and they have added greatly to our store of knowledge.

Among the single-particle nonlinear effects encountered in beam research are bifurcations, chaos, resonance overlap, Arnold diffusion, nonlinear modulation effects, resonance streaming and other exotic transport processes that occur in systems with more than two degrees of freedom. For example, the need to store relativistic beams was the primary motivation for the development of the theory of near-integrable Hamiltonian systems. Collective phenomena that have been encountered include instabilities, Landau damping, coupled motion, beam-beam radiation and pair production of photons, and turbulence. In fact, a number of many-body phenomena have first been observed in particle beams.

The physics of beams—that is, the sophisticated control of beams—has become the very basis for a number of physics subfields, such as particles and fields, and nuclear physics. It also contributes in a significant way to almost every other subfield of physics, from neutral beam and rf heating to plasma physics, from ionimplantation and synchrotron radiation sources to condensed matter, and from particle traps and free electron lasers to atomic, molecular

The First Intelligent Alternative To The Ion Laser

Coherent's "Smart" Innova 300 Redefines The Technology

It's not just a new laser. It's a new kind of laser.

A laser which combines intelligent design with built-in computer intelligence. It defines new productivity standards for lasers. It's unlike any laser you've seen before.

The Innova 300 uses advanced multiple CPU integration for intelligent system control. The Innova 300 features PowerTrack, our actively-stabilized optical cavity. PowerTrack provides optimum power within 1 minute of startup, long-term power stability of $\pm 1\%$ over 8 hours, and low-noise operation. And PowerTrack's new gimbal mirror mount design provides outstanding single-frequency power stability. The result—hours of hands-off, high-performance operation.

And there's more to our intelligent system control. From the second you power up, self-diagnostic routines continually monitor and optimize laser performance for you. There's even on-board memory to store both

user-defined laser control programs and system operational modes. So the routines you use the most are instantly available at the touch of a button. Which means, for the first time, you have a laser which is designed to do exactly what you want it to do.

Another smart feature—a small, powerful CPU based remote module with a menudriven format and LCD display—provides instant control feedback.

All this, with Coherent's field-proven 6W visible and 500mW UV performance.

Does this sound too good to be true? There's even more. For details and a video demonstration, call: U.S. 800-527-3786, ext. 364; United Kingdom (0223) 420501; West Germany (06074) 9140; Japan (03) 639-9871. Or write: Coherent Laser Group, 3210 Porter Drive, PO Box 10042, Palo Alto, CA 94303. The Innova 300—the new standard in ion lasers that the competition can't touch—and you won't have to.

COHERENT LASER PRODUCTS

OPINION

and optical physics.

In addition to its contributions within physics, the physics of beams has benefited many other fields of science and technology. One thinks of radiation therapy, isotope production for medical tracing, radiation processing, geoscience analysis, nanostructure fabrication, archaeology, art history, paleoanthropology, extraterrestrial minerology The list is endless.

But despite their many contributions, beam physicists have experienced discrimination for years, which has hampered development of the field. In establishing the new division, The American Physical Society was attempting to remedy this situation while responding to the intellectual arguments in favor of such a move. Most universities do not have beam physicists on their staffs, nor do they encourage students to obtain training in the discipline. The situation is improving, and with the creation of the new division, I hope it will improve even faster. But the need for trained personnel in particle beam physics is great, and it is not being met at the present time. Of course the US Particle Accelerator Schools, which were established almost a decade ago, are an attempt to fill this gap. But the field needs physicists with the extensive training that can only be received at a research university. I see the development of new university programs in beam physics and the strengthening of existing programs as a major goal.

A second consequence of the discrimination against beam physics is that research in the field is not officially recognized as an activity by any Federal funding agency except the High Energy Physics Division of the Department of Energy. True, other agencies do support beam physics, especially NSF and other branches of DOE, but not as a recognized program. A second major goal should be to convince Washington of the importance of beam physics research (beyond the realm of highenergy physics). This includes getting government agencies to designate such work as a research activity and obtaining funding at a level commensurate with its importance.

I believe that the physics of beams has come a very long way, but the field is only just beginning. The development and experimental use of new and ever-more sophisticated techniques in particle manipulation still lie ahead. In the future, we can continue to look forward to new understanding and further technological triumphs.

1,000 watts of reliable pulsed RF power for your advanced NMR system.

As your horizons in NMR spectroscopy expand, so do your needs for clean rf power and the noise-suppression capability of a gating/blanking circuit.

Our new Model 1000LP embodies the qualities you should expect of your rf power amplifier: Conservatively-rated pulse output of 1,000 watts with Class A linearity over a 100 dB dynamic range. An ample 8-msec pulse width at 10% duty cycle. Newly expanded bandwidth of 2-200 MHz, instantly available without need for tuning or bandswitching. Total immunity to load mismatch at any frequency or power level, even from shorted or open output terminals. A continuously variable gain control to permit adjustment of output level as desired.

And an unexpected bonus: A continuous-wave mode, delivering over 200 watts for your long-pulse applications.

If you're upgrading your system or just moving into kilowatt-level spectroscopy, a few minutes with this remarkable instrument will show you the ease of shutting it down to reduce noise 30 dB in less than 4 µsec. The friendly grouping of lighted pushbuttons for power, standby, operate, and pulse. Finally, the peace of mind from knowing that the Model 1000LP will not let you down when you're most dependent on it.

Call us to discuss your present setup and your plans for improvement. Or write for our NMR Application Note and the informative booklet "Your guide to broadband power

amplifiers."

160 School House Road, Souderton, PA 18964-9990 USA TEL 215-723-8181 • TWX 510-661-6094 • FAX 215-723-5688

Circle number 28 on Reader Service Card