
SQUEEZED AND
ANTIBUNCHED LIGHT

New techniques that exploit the limits of the uncertainty
principle promise nearly noise-free optical measurements
and improved optical information transmission.

Malvin C. Teich and Bahaa E. A. Saleh

As a direct result of the quantum nature of electromagnetic
radiation, all forms of light exhibit inherent and unavoid-
able random fluctuations. Because these fluctuations
reveal information about the nature of light and the
underlying processes that generate it, they have received
considerable attention since the time of Einstein.' But
they are also a source of noise that limits the accuracy with
which information can be transmitted by a beam of light.
Although experiments often still struggle with instrumen-
tal noise, some are quickly approaching the measurement
limits set by the quantum-statistical nature of light. With
the help of new techniques to "squeeze" the uncertainty of
light, researchers can now conduct experiments with
greater precision than possible with laser light. The
generation of various forms of squeezed light in recent
years has raised hopes for its application to such diverse
areas as gravity-wave detection based on optical interfero-
metry and reduced-error lightwave communications.

Nonclossicol light
To understand squeezed light, recall that the electromag-
netic field associated with a single mode of radiation may
be described by two independent components—its magni-
tude and phase or, alternatively, its cosine and sine
quadratures. According to quantum mechanics, these
components are represented by noncommuting Hilbert-
space operators. The Heisenberg uncertainty principle
therefore requires that the product of their uncertainties
obey a fundamental lower bound. As a result, the two

Malvin Teich is a professor in the departments of electrical
engineering and applied physics at Columbia University.
Bahaa Saleh is a professor in the department of electrical and
computer engineering at the University of Wisconsin, Madison.

components cannot be simultaneously known with perfect
precision, and the value of the electric field cannot be
totally certain.

However, the uncertainty of either of the quadrature
components may in principle be reduced without limit,
rendering it noiseless. Of course, this reduction comes at
the expense of an increase in the uncertainty of the other
quadrature component. Similarly, the photon number
associated with a mode may be known exactly, in which
case the phase of that mode is totally uncertain. Light
with a minimum uncertainty product, but with an
unequal apportionment of fluctuations in the two quadra-
tures, is said to be quadrature squeezed. Light whose
photon-number fluctuations are smaller than those of the
Poisson distribution is said to be photon-number squeezed.
Such light is also termed "sub-Poisson" because the
standard deviation associated with the number of photons
is less than that for a Poisson distribution. The nomencla-
ture indicates that some of the fluctuations are "squeezed"
out of one component and into the other.

Ideal lasers emit coherent light, which has quadra-
tures whose fluctuations are equal and satisfy the
minimum product permitted by the uncertainty principle.
The photon-number fluctuations of coherent light are
governed by the Poisson distribution.

Squeezed light is one form of nonclassical light; it
cannot be mathematically described as a superposition of
coherent states with nonnegative weights. Another form
of nonclassical light is "antibunched" light, in which the
photon coincidence rate is reduced below its value for
coherent light. Nonclassical light has attracted consider-
able interest2" 4 since the possibility of generating it was
first suggested in the 1960s by Roy Glauber of Harvard
University, H. Takahasi of the University of Tokyo, David
Stoler, now at AT&T Bell Laboratories, and Horace Yuen,

26 PHYSICS TODAY JUNE 1990 1990 Ampriron Ininn



WP)I 2

The electric field and its uncertainty, a: The
marginal probability densities |^(x)|2 and
\<p(p)\2 provide measures of the widths ax and
ap of the uncertainty region plotted in phase-
space (open area), b: As each point in this
region rotates with angular velocity to its
projection on the x axis traces out a sinusoidal
function. Curves corresponding to three
arbitrarily chosen points are illustrated in
color. A composite diagram of all such
waveforms generated by the set of points lying
within the uncertainty region indicates the
quantum uncertainties imparted by the
quadrature field operators x and p to the
electric-field waveform. Figure 1

now at Northwestern University. Antibunched light was
the first form of nonclassical light to be produced in the
laboratory, in a pioneering resonance fluorescence experi-
ment carried out in 1977 by Leonard Mandel of the
University of Rochester and his students H. Jeffrey
Kimble (now at Caltech) and Mario Dagenais (now at the
University of Maryland).5 Yet squeezed light was not
generated until 1985, although there is no fundamental
restriction on the degree to which noise may be reduced in
a given component. Quadrature squeezing is difficult to
achieve because nonlinear optical interactions are re-
quired to impart the phase-space asymmetry characteris-
tic of it. And photon anticorrelations are needed to
produce photon-number squeezing. Furthermore, squeez-
ing is fragile; once produced, it is readily diluted by the
ever-present random loss of photons and by the contamin-
ation of (unsqueezed) background photons.

Mathematical representation
The electromagnetic field in an optical cavity has the same
mathematical description as a set of quantum-mechanical
harmonic oscillators. The electric-field operator associat-
ed with a mode of angular frequency <u at a given position
is '6(t) = '6\l_x cosUot) + p sindot)], where the carets denote
Hilbert-space operators and *?„ is a constant. The
quadrature field operators x and p are analogous to the
position and momentum operators of a simple mechanical
harmonic oscillator appropriately normalized such that

the commutator [x,p] = i/2 and the energy operator of the
mode is iko(x2 + p2). The state of the electric field is
described by a wavefunction \[ix) satisfying the Schro-
dinger equation, where \tlAx)\z represents the probability
density that the observed value of the quadrature compo-
nent x is x. The photon-number operator is given by
h = x1 + p2 — V,, and the states for which the number of
photons is precisely n (with no uncertainty) are the energy
eigenstates, \l>n(x). These are therefore called the photon-
number states. The energy of the mode takes on the
quantized values En = fuo(n + V2), n = 0,1,2,. . . , where n
is the number of photons (quanta) in the mode; the
contribution of V2 represents vacuum (zero-point) fluctu-
ations.

The expected value of the electric field may be
represented in the x-p plane (phase space) by a rotating
phasor a exp( — icot), where a = <£> + i<p> is the initial
value of the phasor at t = 0. The projection of the phasor
along the direction of the x axis is the mean electric field.
Because uncertainties are present, however, the expected
value of the field alone does not provide a complete picture
of the light. For many states of light the mean field
vanishes and the energy is totally contained in its random
fluctuations.

The simplest measures of uncertainty or fluctuations
and Theseare the standard deviations ax

quantities depend on the state ipix) and its Fourier
transform <f>(p), so that the Heisenberg uncertainty rela-
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tion <7;c(7p>1/4 is obeyed. The quadrature components of
the electric field therefore cannot be simultaneously
specified with unlimited accuracy; states of minimum
uncertainty obey the equality ax ap = V4. Because the
electric field comprises both quadrature components, light
without uncertainty does not exist.

The uncertainties associated with the quadrature
components are illustrated schematically in the x-p plane

Electric-field uncertainties for coherent and squeezed light.
Uncertainty regions (left) for various types of light are shown
together with the time dependences of the corresponding
mean electric fields (red curves) and their uncertainties
(shaded), a: The coherent state exhibits a circular uncertainty
region centered about the phasor. Points (x,p) in the
uncertainty circle trace out an electric field with an
uncertainty that is independent of time, b: The uncertainty
region for the vacuum state is a circle centered at the origin.
c: The squeezed-vacuum state has an elliptical uncertainty
region, d: The quadrature-squeezed coherent state has an
elliptical uncertainty region centered about the phasor. As
with the squeezed-vacuum state the electric field shows a
periodic reduction and enhancement of its uncertainty. If the
minor axis of the ellipse were oriented along the phasor, the
state would also be photon-number squeezed, e: A
sufficiently narrow crescent-shaped uncertainty region
generates a photon-number-squeezed state with an electric
field that shows substantial uncertainty at all times. Figure 2

by means of an uncertainty region of dimensions ax and ap
in the x and p directions, as shown in figure 1. This region
is centered about the point «*>,<p», and rotates with
angular frequency w. Diagrams of this type were first
used by Carlton Caves, now at the University of Southern
California.

The precise shape of the uncertainty region is difficult
to define because Jc and p cannot be precisely determined
simultaneously. The joint probability density of x and p is
therefore not meaningful. Nevertheless, a formal mea-
sure of the uncertainty distribution can be provided by the
Wigner distribution function6

ip*(x+y)ifi(x-y)eipydy

This function is defined such that its projections on the x
and p axes are the marginal probability densities |$x)|2
and \<f>{p)\2, respectively, with rms widths ax and ap. The
photon-number uncertainty is related to the spread of the
uncertainty region in the radial direction since
h = x2 + p2 — V2. The angle that the uncertainty region
subtends is a measure of the phase uncertainty.

Graphical representation
In figure 2 we show the uncertainty regions and the
corresponding time dependences of the electric field for
various forms of light. The idealized noiseless limit of
classical light would be a point of dimension zero in the
phase-space plot which traces out a perfectly sinusoidal
electric field with no uncertainty. Figure 2a represents the
quantum state that most closely resembles noiseless
classical light—the coherent state. It is a minimum-
uncertainty state described by the Gaussian wavefunction
tp{x) «. exp( — i<p>x) exp[ — {x — (x})2], with equal quadra-

\ture uncertainties given by ax = ap = \ . The Wigner
distribution function is then given by the expression
WU,p)aexp| - 2[(x - <x»2 + (p - </>»2]), so that the un-
certainty region is concentrated within a circle of radius V2
centered about the phasor a = <x> + i<p>. For |a| > 1, the
uncertainty region is simultaneously confined about the
point a, to the maximum extent permitted by the
Heisenberg uncertainty principle. The photon-number
probability distribution P(n) is then Poisson with mean
<ra> = \a\2 and variance an

2 = <re>, so that an =<ra>1/2. For
\a\ i> 1, the angle a,, subtended by the uncertainty region is
approximately 1/2/\a\ = V2/<rc>1/2 so that anag = V2.

In the limit when a = 0, the coherent state becomes
the vacuum state, which is the same as the n = 0 photon-
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number state, ipo(x) « exp( — x2). The vacuum-state
Wigner distribution function, W0(x,p) <x exp[ — 2(x2 + p2)],
is illustrated in figure 2b. It has n = 0, <n> = 0, <rn =0 and
o-f, = oo. Although its mean photon number is 0, the
vacuum state has zero-point energy V2fc, so that it
exhibits residual fluctuations in x and p. Although the
vacuum is devoid of photons, it is noisy!

The uncertainty region for the coherent state is
circular, but for other states, it can assume other shapes,
provided that the area is conserved as the minimum
uncertainty product is approached. For minimum-uncer-
tainty states, squeezing the uncertainty along one axis
stretches it along the conjugate axis. A state whose x
quadrature is squeezed has a probability density whose
width <rT is less than V2. If, for example, the vacuum state
ifio(x) a exp( — x2) were somehow scaled in the x direction
by a factor s>l , the wavefunction would become
tf>s(x)ccexp( — s2x2). In that case, the probability density
|(is(;c)|2 would be a Gaussian function whose width had
been squeezed from ax = V2 to ax = l/2s < V2. The wave-
function <f>(p) = exp( — p2/s2) is also Gaussian, but the
width of \<p(p)\2 is correspondingly stretched to a width
ap = s/2 > V2. The product crx ap maintains its minimum
value of V4, so that the minimum-uncertainty property is
maintained. The result is the squeezed-vacuum state.
The Wigner distribution function that is associated with
this state is given by WJx,p)ccexp[ — 2(s2x2 +p'2/s2)],
demonstrating that the uncertainty circle is squeezed into
an ellipse as illustrated in figure 2c. The mean photon
number <rc> is (s — l/s)2/4, so that this state no longer
truly represents a vacuum. The variance
an

 2 = 2(<rc> + (n*)2) is twice that of the Bose-Einstein
distribution; as a result the photon-number distribution is
noisier than that for chaotic light.

The coherent state wavefunction, given by the expres-
sion ip{x) <x exp( — ix<p>)exp[ — (x — <x>)2], can be similarly
transformed into a quadrature-squeezed state by using the
transformation (x,p) — (sx,p/s) with s> l , yielding
if)K(x)«exp( — bc<p>)exp[ — s2(x — <JC>)2]. The correspond-
ing Wigner distribution function transforms to
Ws (x,p) o: expI - 2[s2(x - <x»2 + {p- ip>f/s2} |, which
has an uncertainty region that is concentrated in an
ellipse, as shown in figure 2d. The squeezed-coherent state
can exhibit either super-Poisson (<jn ><n>1/2) or sub-
Poisson (crn <<n>1/2) photon-number statistics, depending
on the angle <p that the phasor a = <x> + i<p> makes with
the minor axis of the ellipse. When <p = 0 (in-phase
quadrature squeezing), the minor axis of the ellipse aligns
with the phasor a and lends only a small uncertainty to
the radial direction. The photon-number distribution is
then sub-Poisson and the state is photon-number squeezed
as well as quadrature squeezed. In contrast, when <p = IT/2
(shown in figure 2d), the major axis of the ellipse aligns
with the phasor a. This lends a large uncertainty to the
radial direction, thereby giving rise to a super-Poisson
photon-number distribution.

Although its electric-field uncertainty is always large,
as illustrated in figure 2e, a sufficiently narrow crescent-
shaped uncertainty region results in a photon-number
squeezed state. As the radial extent of the crescent is
decreased, its angular extent increases until it becomes a
ring. This limit corresponds to the photon-number state
<£„ (x), for which an = 0. The phase is then totally random
and the quadrature uncertainties are symmetrical and
large.

As figures 2c and 2d show, the unequal uncertainties
in the two quadrature components of the squeezed-vacuum
state and the squeezed coherent state are manifested in

Polarizing
Beam Splitter

Optical
Parametric

Amplifier

Output

A squeezed-vacuum state generated by a
phase-sensitive process. The scheme shown
here involves degenerate parametric
downconversion in a crystal of MgO:UNbO3.
A Nd1+:YAC laser (not shown) provides both
the local oscillator at 1.06 fim (red) and the
parametric amplifier pump at 0.53 jum
(green). The pump beam is derived from a
portion of the laser light by passage through a
frequency-doubling crystal (not shown). The
nonlinear process in the cavity reduces the
noise in one quadrature of the vacuum
entering the cavity, and a squeezed vacuum
state at 1.06 jam emerges. The squeezed-
vacuum state is detected by a balanced
homodyne detection scheme in which it is
combined with the local oscillator at a beam
splitter before dual detection. Differencing
the detector outputs reveals the squeezed
vacuum signal. (Adapted from ref. 7.)
Figure 3
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the electric field by periodic occurrences of a large
uncertainty followed, one quarter-cycle later, by a small
uncertainty.

Quadrature-squeezed light
The generation of quadrature-squeezed light essentially
involves the differential scaling of the two quadratures,
so that it must be produced by some phase-sensitive
process. It can be achieved by mixing a wave with its
conjugate in a nonlinear optical material. In 1979, Yuen
and Jeffrey Shapiro, working at MIT, suggested that a
process known as four-wave mixing might produce
squeezed light, and indeed it does. This technique relies
on the use of a nonlinear medium to couple four
lightwaves. Two of the waves are strong pump waves,
and the other two are weak waves. As a result of the cou-
pling mechanism, one of the weak waves becomes a
conjugate of the other. When the two weak waves are
combined at a beam splitter the real and imaginary parts
are scaled by different factors so that an asymmetry is
introduced in the uncertainty region.

In 1985 Richart Slusher, Bernard Yurke and their
colleagues at AT&T Bell Labs used a form of four-wave
mixing to generate quadrature-squeezed light. At about
the same time, several other groups, using three- and four-
wave mixing and other nonlinear optical processes, also
demonstrated quadrature squeezing. (See PHYSICS TODAY,
March 1986, page 17.) The strongest effect published to
date (about 60 % noise reduction) was achieved by Kimble
and his collaborators working at the University of Texas
at Austin.7 (See PHYSICS TODAY, March 1987, page 20.)
This group used a three-wave mixing technique involving
parametric downconversion in which an incoming photon
of angular frequency oi is split into two photons, each of an-
gular frequency of co/2. The three-wave parametric
amplification process leads to phase-sensitive gain, and
the cavity in which the nonlinear crystal is placed
increases the effect by multiple passes. (See figure 3.)

A phase-sensitive process is required not only to
generate quadrature-squeezed light but also to detect it.
Noise reduction will be achieved if the electric field is
measured only at those times when its uncertainty is
small. Direct detection is generally not suitable for
detecting quadrature-squeezed light because it is sensitive
to the photon number, which involves equal contributions
from both the quiet and the noisy quadrature components.
One technique for sensing squeezed light makes use of
homodyne detection, in which the light is mixed with
coherent light (from a laser local oscillator) at a beam
splitter; this superposition is then detected with a photon
counter or photodiode. If the phase of the local oscillator is
appropriately selected, the superposition emerging from
the beam splitter is photon-number squeezed, which gives
rise to a sub-Poisson photocount at a detector (or a
photocurrent below the shot-noise level at a photodiode).

In 1983 Yuen and Vincent Chan (MIT Lincoln
Laboratory) proposed a balanced homodyne detection
scheme (balanced mixer) that has come to be commonly
used today. As diagrammed in the lower portion of figure
3, the squeezed-vacuum signal and a coherent local
oscillator beam impinge on a 50:50 beam splitter. The
light at both output ports is detected, so no energy is lost.
Because of the phase shift at the beam splitter, the
contributions of the squeezed vacuum at the output ports
differ by 180°. The balanced-detector output is the
difference of the photocurrents after detection. This
differencing operation suppresses all of the fluctuations in
the local oscillator, and serves to extract the quadrature of
the signal with reduced fluctuations. Therefore, as the
phase of the local oscillator is varied, the detector will
alternately detect fluctuations above and below the shot-
noise level.

Antibunched light
The statistical properties of a light beam are reflected in
the random process governing the arrival of photons at a

• - • -
Poisson Photons

Emission Process

Excitation Process » 1 -i » i *— -< i — — <»—i
Time Sub-Poisson Photons

Hypothetical photon gun that is randomly fired generates a stream of
photons that have a Poisson number distribution. The stream becomes sub-
Poisson (bottom row of dots) if those photons arriving within a specified
"dead" time are eliminated. Such anticorrelations can be imparted by any of
three processes: The initial excitation process (trigger); the emission process
(firing mechanism); or a feedback process derived from the emitted photons
that controls either of the other two processes. Figure 4
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Photon-number-squeezed light can be generated by means of
excitation control using both of the devices shown below, a: The
Franck-Hertz apparatus contains mercury vapor (black dots). In the
shaded region the electrons (red dots) have attained sufficient
kinetic energy to excite the mercury atoms by means of inelastic
collisions. Because of space charge associated with Coulomb
repulsion, the electrons have a sub-Poisson distribution, and so too
do the 253.7-nm photons (violet) emitted when the atoms relax
back to the ground state, b: A similar scheme in an InCaAsP/lnP
distributed-feedback semiconductor injection laser. By virtue of the
external resistor in series with the battery, the current flowing
through the device is constant, that is, the pump fluctuations are
suppressed, so that the electrons (red dots) and holes (green dots)
have sub-Poisson distributions. Their recombination in the active
region (shaded) generates 1.56-/xm photons (red) with a sub-
Poisson distribution. The optical feedback inherent in the laser
structure enhances the effect. Figure 5

detector. Light for which the photons arrive at perfectly
regular time intervals has lower photon-number fluctu-
ations than light whose photons arrive at statistically
independent times. In the former case the number of
photons counted in any time T is fixed, so that an — 0,
whereas in the latter case the number has a Poisson
distribution, so that an

 2 = < n > for all T. In general,
however, the mean and variance of the number of counts
are functions of the counting time T, so that light may be
sub-Poisson for one counting time and super-Poisson for
another.

An important characteristic of this random process is
the rate of photon coincidence Ga)(r) at two times
separated by the interval r. The normalized coincidence
rate is defined by ^2)(r) = G'2)(T)/A2 for a stationary optical
beam whose photons arrive at a rate of A photons per
second. The photons associated with coherent-state light
arrive independently, so that the normalized coincidence
rate g*2)(r) is 1 for all time delays r. If g''2'(r)< 1, pairs of
photons delayed by the time r are less likely to occur, so
their occurrences are anticorrelated. Light for which the
arrival of photon pairs is anticorrelated when T is small is
called antibunched light.3 Two definitions of antibunch-
ing are commonly used: The value of ^2KT) at T = 0 is less
than unity, or the slope of g*2l(r) at r = 0 is positive.

The coherent state provides a boundary between
antibunching and bunching. Whereas thermal light is
bunched (g*2)(0)>l), coherent-state light is unbunched
(g<2»(0)=l). Antibunching (^2I(O)<1) indicates that a
source of light is nonclassical because anticorrelation at
r = 0 is inconsistent with viewing G'2l(r) as a correlation
function of the optical intensity.

Photon-number-squeezed light
The connection betwen photon-number squeezing and
antibunching is subtle." For short counting times the two

effects must accompany each other. For single-mode light,
$2)(T) is independent of r, so that antibunching implies
photon-number squeezing and sub-Poisson statistics. In
general, however, the photon-number distribution may be
sub-Poisson for short T and super-Poisson for long T, or
vice versa.

Photon-number-squeezed light may be generated by
mixing quadrature-squeezed light with a coherent local
oscillator at a beam splitter, as discussed earlier. It is also
possible to produce it directly by introducing anticorrela-
tions into photon occurrences that are spaced closely in
time. The former technique is used when access to the
phase of the field is required, for example, in applications
where information is to be conveyed by the phase.
However, when information is to be conveyed directly by
the photon number, the latter technique is simpler.

The direct generation of photon-number-squeezed
light may be visualized in terms a sequence of photons
randomly "shot" from the hypothetical gun shown in
figure 4. As the photons emerge they have a Poisson
number distribution. One may make the sequence more
regular by deleting every photon that follows another by
less than some specified interval of time. The presence of
such anticorrelations results in a more predictable stream
of photons that exhibits sub-Poisson behavior. Anticorre-
lations may be introduced by pulling the trigger at regular
time intervals (excitation control), by restrictions imposed
by the firing mechanism such as the time required for it to
reset (emission control) or by using information about the
photon-occurrence times to control future excitations or
emissions (feedback control).

To understand excitation control, consider the light
generated by a collection of atoms excited by inelastic
collisions with a stream of electrons, as, for example, in the
Franck-Hertz experiment. In terms of the photon gun
shown in figure 4, the electrons are the excitation process
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and the atoms represent the emission process. In the
Franck-Hertz experiment illustrated in figure 5a, Cou-
lomb repulsion can render the electron stream space-
charge limited, and this phenomenon imparts a regularity
to the electron flow. As a result there is a regularity in the
number of atoms they excite and hence in the number of
photons the atoms spontaneously emit. Such excitation
control therefore results in the emission of spontaneous
fluorescence photons that are photon-number squeezed.8
We used an apparatus very much like this in 1985 to
produce the first unconditionally photon-number-
squeezed light.9

Unfortunately, the loss of photons resulting from
imperfect photon generation, collection and detection
diminishes the sub-Poisson behavior, and these losses
account for the small amount of photon-number squeezing
in our initial experiment. Although the photon-number
uncertainty can in principle be reduced to zero, the effect
is fragile (as is quadrature squeezing), so that loss and the
presence of background photons must be assiduously
avoided.

To minimize the loss, a number of compact, Franck-
Hertz-type devices with high collection efficiencies have
been developed. The electrons supplied from a dc source,
such as a battery, provide a convenient source of sub-
Poisson excitations because of their intrinsic Coulomb
repulsion (the principal source of noise is Johnson noise).
A light-emitting diode, which ideally emits one photon per
injected electron, can serve as the emitter. A solid-state
analog of the space-charge-limited Franck-Hertz experi-
ment is therefore provided by a simple LED driven by a
constant-current source. Indeed, Paul Tapster, John
Rarity and Julian Satchell of the Royal Signals and Radar
Establishment in Malvern, England showed that this

device emits photon-number-squeezed light."1

A significant advance was achieved by Yoshihisa
Yamamoto and his colleagues at NTT Basic Research
Labs in Tokyo, who in 1987 developed a semiconductor
injection laser driven by a constant current source that
produced photon-number-squeezed light." This device
behaves like a solid-state, stimulated-emission version of
the space-charge-limited Franck-Hertz experiment,
which is illustrated in figure 5b. Although Rarity,
Tapster and Eric Jakeman have attained a greater degree
of photon-number squeezing by the use of feedback
control in a parametric downconversion device,12 the
injection laser has many advantages. It is compact and
produces a large photon flux, and it has a broad spectral
bandwidth and high efficiency. Other semiconductor
device structures, employing solid-state space-charge-
limited current flow and recombination photons, have
also been proposed.13

Although excitation-control methods may hold the
greatest promise for producing useful photon-number-
squeezed sources, emission control can lead to photon-
number squeezing. For example, dead time prohibits a
second event from occurring within a fixed time following
a given event. It therefore prevents the events from being
arbitrarily close to each other and, as shown in figure 4,
regularizes them. This reduces the uncertainty in the
number of events registered in a fixed counting time T. A
trigger or firing mechanism that requires time for
resetting between consecutive shots, but is otherwise
random, produces a sub-Poisson distribution.

Because isolated atoms subjected to Poisson excita-
tions cannot emit photons during the time they are being
reexcited, resonance fluorescence emissions are character-
ized by this description. In the earliest photon-number-

Detector

Feedback control for generating
photon-number-squeezed light, a: In

this simplified diagram the laser excites
a beam of Ca40 atoms which then

decay by the sequential emission of a
pair of photons (one green and one

violet). The electrical signal produced
by the detection of a green photon is

fed forward to operate an optical gate
that selectively allows certain of the

violet companion photons to pass, b: A
scheme involving parametric

downconversion used by a group at the
Royal Signals and Radar Establishment

to produce the strongest directly
generated photon-number squeezing to

date. The nonlinear crystal (KD*P)
produces two correlated streams of

photons, one of which provides a
feedback signal to control the

excitations by means of an optical
modulator. Figure 6

Laser

Laser
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squeezing experiments carried out with resonance fluores-
cence radiation,14 single atoms could not be isolated, so the
photodetector had to be gated to assure operation with
only a single active atom in the apparatus. The resulting
light was therefore conditionally photon-number
squeezed. Subsequent experiments, conducted in 1987 by
Herbert Walther and his colleagues at the Max Planck
Institute for Quantum Optics in Garching, were successful
in trapping single ions and thus in producing uncondition-
ally photon-number-squeezed resonance fluorescence radi-
ation.

The control of the excitations or emissions may be
derived from the emitted photons themselves by using
feedback control, or photon control. If the arriving
photons can be monitored without being destroyed, their
arrival times can be used to modify subsequent excitations
or emissions. Feedback control of this type can be carried
out if the photons are observed by means of a quantum-
nondemolition measurement, which allows an observable
to be measured without perturbing it. Schemes for
implementing quantum-nondemolition measurements
have been suggested by Yamamoto and his colleagues, and
have been implemented in optical fiber systems by Marc
Levenson of IBM's Almaden Research Center together
with Daniel Walls of the University of Auckland, and their
colleagues.

Feedback control can also be achieved if twin photon
streams are available, in which case one of the streams can
be annihilated to create the control signal, while the clone
stream survives. Configurations of this kind may be
useful for generating photon-number-squeezed light with
arbitrary photon-number statistics.ls One suggested pho-
ton-feedback configuration makes use of cascaded atomic
emissions,'6 as portrayed in figure 6a. A Poisson stream of
laser-excited Ca40 atoms enters the apparatus. Each atom
decays by the sequential emission of two photons—one
green and one violet. The green photon is detected in a
conventional manner to provide a feedback signal. This
signal is used to selectively permit some of the violet
companion photons to pass through an optical gate. Since
the photons are always emitted in correlated pairs, only
selected companions survive to produce a sub-Poisson
photon stream at the output. (Correlated photon pairs
from Ca40 were first used by Alain Aspect, now at the Ecole
Normale Superieure in Paris, and his colleagues for
carrying out experiments demonstrating violations of the
generalized Bell inequalities.)

The same approach has been implemented by making
use of a parametric downconversion experiment,12 as
shown in figure 6b. In this case, the feedback signal is
used to control the excitations (pump) rather than one of
the twin photon beams. This technique has produced the
strongest directly generated photon-number squeezing to
date (about 50% noise reduction).

Applications
Because the capacity of light to carry information is
limited by its random fluctuations, squeezed light is likely
to find use in lightwave communications as well as in high-
precision measurements ranging from gravitational-wave

(j*) |Q Beamsplitter

Squeezed-Vacuum
Generator

Mirror

t

Detector

Detecting gravity waves with a Michelson
interferometer. Squeezed-vacuum light entering
the output port reduces the noise and improves
the sensitivity, as shown by the phase-space-
uncertainty sketches. Superposed beams
between the arms are schematically illustrated by
alternating shades of blue. Figure 7

detection to spectroscopy to biology. In principle, one can
circumvent the quantum mechanical uncertainty by
putting the information on the quiet component of a
squeezed light beam and using a detection scheme that is
insensitive to the noisy component.

In a coherent communication system, for example, a
laser local oscillator can lock the photodetector onto the
quiet quadrature carrying the information, while the
noisy quadrature is ignored.17 Similarly, one can make a
direct-detection communication system noise-free by us-
ing a fixed number of photons to represent a bit of
information.18 The noise is squeezed into the phase
fluctuations, which are not registered by the photodetec-
tor for the system.

There is currently interest in a suggestion first made
by Caves for using quadrature-squeezed light to measure
the gravitational waves expected to emanate from a
cataclysmic event such as a supernova explosion. Figure 7
shows a schematic representation of a Michelson interfer-
ometer suitable for this purpose. The light from a laser is
divided at a beam splitter, then reflected by two mirrors at
the ends of the interferometer arms, and finally recom-
bined at the beam splitter and sent on to the detector. If a
gravitational wave caused the mirrors to vibrate it would
modulate the phase of the laser light reflected from it.
The interference pattern at the detector would then be
perturbed from its quiescent null operating point and the
resulting intensity variations at the detector would
register the gravitationally induced motion of the mirror.
(See PHYSICS TODAY, February 1986, page 17.) In conven-
tional operation without the benefit of squeezed light, the
interferometer sensitivity is limited by the fluctuations of
the vacuum light entering the output port, which leads to
shot-noise-limited operation. To understand the impor-
tance of feeding squeezed vacuum light into this normally
unused port, note that the interferometer, when operated
in a balanced configuration, is formally equivalent to a
balanced homodyne detector (compare figures 3 and 7). As
in the homodyne detector, the fluctuations of the laser
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Direct-detection lightwave communications could in principle be improved if pulses of photon-number-
squeezed light were used to carry information. The photon occurrences in a light pulse (shaded region) are
more regular for photon-number-squeezed than for coherent light. The reduced variability results in a reduced
error rate in communication systems limited by photon noise. Figure 8

light cancel and the output noise depends only on the
fluctuations that enter the output port, as Kimble and his
coworkers have experimentally demonstrated.

We now turn to two specific examples where the use of
photon-number-squeezed light might prove beneficial. In
an idealized direct-detection digital lightwave communica-
tion system, errors (misses and false alarms) can be caused
by noise from many sources, including photon noise
intrinsic to the light source.3 If photon noise is the
limiting factor (which is rarely the case in the current
state of our technology), the use of photon-number-
squeezed light in place of coherent light could reduce this
noise and thereby the probability of error. As shown
schematically in figure 8, for a coherent source each pulse
of light carrying one bit of information contains a Poisson
number of photons so that the photon-number standard
deviation is an =<«>1/2. For photon-number-squeezed
light, each pulse contains a sub-Poisson number of
photons, so that an is less than <rc>"2. In a simple binary
on-off keying system whose only source of noise is photon-
number fluctuations obeying the binomial distribution
(with variance-to-mean ratio F<1) rather than the
Poisson, the mean number of photons per bit <V> required
to achieve an error probability of 10 9 decreases below its
so-called coherent-light quantum limit of 10 as F decreases
below unity. The "quantum limit" of a lightwave commu-
nication system should therefore more properly be desig-
nated as the "shot-noise limit."

Photon-number-squeezed light also could be used in
visual science to clarify the functioning of ganglion cells in
the mammalian retina. These cells transmit signals to
higher visual centers in the brain via the optic nerve. In
response to light, the ganglion cell generates a neural
signal that takes the form of a time sequence of nearly
identical electrical events. The statistical nature of this
neural signal is generally assumed to be governed by two
nonadditive elements of stochasticity: the incident pho-
tons (which are Poisson distributed in all experiments to
date) and a randomness intrinsic to the cell itself.19 If the
statistical fluctuations of the photons were reduced by
exciting the retina with photon-number-squeezed light,
the essential nature of the randomness intrinsic to the cell

could be isolated and unambiguously determined. The use
of photon-number-squeezed light as a stimulus in visual
psychophysics experiments could also help clarify the
nature of seeing at threshold.20

* * *
This work was supported in part by the Joint Services Electronics
Program through the Columbia Radiation Laboratory.
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