

EQUATION PUNCTUATION ARGUMENTATION

I usually read David Mermin with pleasure, and particularly enjoyed his column earlier this year encouraging authors to stand up to wrongheaded editors on matters of style. So it was with stunned disbelief that I read his counsel to number, mindlessly, all displayed equations (October 1989, page 9). As a guide to life, this ranks with the recent World Series announcer's ad-lib advice to run outside at the first tremor of an earthquake.

Mermin misses the point: The number beside an equation is not simply an aid to future exegeses but is, more importantly, a form of large-scale punctuation. The numbering of equations is analogous to the paragraphing of sentences, identifying break points in the line of thought. Properly executed, it clarifies the structure of the mathematics: Numbered equations are either starting points or conclusions, important in their own right, or intersections where distinct lines of development come together. A paper in which intermediate equations are numbered simply because they are there is like one of those old BASIC programs that had to have a number for each line of code—sure it's easy to specify where you are, but it's hard to figure out what's going on there.

Mermin's other rules clearly belie his claim that all equations should be numbered. He observes that equations are a form of prose and should be treated as such, and that's exactly right. Would he argue that every sentence should be numbered, like scripture, just in case some reader should wish to refer to it? He observes that a reader shouldn't be sent back through a manuscript in search of equations 2.47, 3.51 and 5.13, and this too is correct. One antidote to such unpleasantness is to number only the noteworthy equations; there are few papers with 47 + 51 + 13 of these.

We must hope that Mermin will someday rejoin the community of literate mathematical scientists. Until he does, graduate students and

other impressionable youth should be discouraged from reading his columns.

WARREN H. WHITE
Washington University
11/89

I very much enjoyed N. David Mermin's column "What's Wrong with These Equations?" I would like to consider his Math Is Prose rule, which states that one should end displayed equations with a punctuation mark.

What is the purpose of punctuating anything? It is to provide compact symbolic information that allows the reader to "process" the text with a minimum amount of effort and ambiguity. Too little of such symbolic information or *too much* can lead to extra work and confusion for the reader. The way to prepare the most cogent article possible is not to blindly follow unbendable rules, but rather to use your own common sense in finding the critical point of required symbolic information that maximizes the digestability of the paper. It was Ralph Waldo Emerson who said, "A foolish consistency is the hobgoblin of little minds." Between the extreme poles of the two dictates "Punctuate *all* equations!" and "Punctuate *no* equations!" lies the common-sensible medium "Punctuate displayed equations only if it is necessary to do so to provide symbolic information not already available to the reader." Let's be honest now: 99.999% of the punctuation required by equations consists of commas and periods. At a primitive level, what information do these symbols convey? They tell the reader to pause a moment before continuing on with the "processing" of the paper. But the fact that a displayed equation is a picture-like object, *almost* always numbered, and indented both horizontally and vertically from the body of the text, is more than sufficient to give the reader a visual cue to pause, rendering the need for a comma or period superfluous.

The weak keystone in Mermin's

eV Products introduces...
... the eV-550

- Ultra Low Noise - Charge-Sensitive Preamplifier

General purpose preamplifier with **replaceable** front-end electronics

- ✓ Low noise: 280 e rms at 0 pf (eV-5091) to 1090 e rms at 1,000 pf (eV-5092)
- ✓ Low cost, replaceable front-end electronics (hybridized)
- ✓ High voltage biasing
- ✓ Input FET, diode protected
- ✓ Rise time 12 nsec (eV-5091)
- ✓ Customized designs available for various detectors
- ✓ Low Price: \$648.00 (eV-550)
- ✓ Based on designs developed at Brookhaven National Laboratory

Applications: Semiconductor detectors (Si, Ge, HgTe, etc.); channel electron multiple arrays (CEMA), ideally suited for resistive anode readouts; photodiode detectors; front-end electronics for measuring radioactive materials; proportional gas detectors for charged particles or neutrons.

Triple Preamplifier (the eV-350 is now available)

Cooled FET Preamps (available soon)

eV Products
Division of Electron Control Corp.

2b Old Dock Road
Yaphank, NY 11980

Phone (516) 924-9220
Fax (516) 924-1631

Circle number 13 on Reader Service Card

Things Your Mother Never Told You About HV Power Supplies!

1. *Your mother never told you* of the many advantages of Glassman high voltage technology over other design approaches...

2. *Your mother never told you* that Glassman high voltage power supplies use air as the primary insulating medium in their high voltage structures. Our field-proven air insulation technique provides significant weight reduction and eliminates the unpleasant things associated with other dielectric mediums.

3. *Your mother never told you* that Glassman employs the most advanced pulse-width modulated circuitry available in high voltage power supplies. Its use minimizes

parts count and reduces complexity as compared to other designs.

4. *Your mother never told you* when you need the most compact high power high voltage DC power supplies available, Glassman designs...manufacturers...and delivers them. On time, at competitive prices!

5. *Your mother never told you* that Glassman has the widest range of high voltage switchers available from...1 watt to 15 kW, 0-1 kV to 0-600 kV, with unrivaled reliability. All backed by responsive service and a three year warranty!

And just like mother... Glassman gives you sound advice, loving support, and solutions to those problems that seem impossible. Don't you owe it to yourself to get all the facts on Glassman high voltage power supplies? Give us a call. The coffee's hot, the apple pie is fresh, and high voltage power supplies never were so good!

Glassman High Voltage Inc.

Route 22 (East)
Salem Industrial Park, PO Box 551
Whitehouse Station, NJ 08889
Telephone (201)534-9007
TWX 710-480-2839
FAX: (201)534-5672

GLASSMAN HIGH VOLTAGE INC.

Circle number 14 on Reader Service Card

argument is contained in his sentence "We punctuate equations because they are a form of prose (they can, after all, be read aloud as a sequence of words) and are therefore subject to the same rules as any other prose." This reasoning is rather arbitrary. Yes, they *can* be read as a sequence of words, but in fact they never are. Treating the equation as a linear string of symbols occurs only while it is typed, not while it is read. The mental assimilation of a formula is more akin to gazing upon a painting by van Gogh than reading a sonnet by Shakespeare. The formula arrives as a gestalt: a unified symbolic configuration having properties that cannot be derived from its parts. It strikes the mind like a pebble dropped into a pond—sending wavelets of coded information to every nook and cranny of our internal mathematical processors. Semi-isolated formulas are not "droppings on a lawn" as Mermin contends, but rather jewels lying in the sand. Formulas are not read as prose and hence should not be punctuated as such.

Let us not forget that as physicists our primary language is mathematics, and the information that we wish to convey is almost always of a mathematical or numerical form. That we must embed our equations in a scaffolding of prose for the sake of continuity, clarity, and elaboration should not blind us to the fact that by the very nature of our work the equations hold a place of primary importance and the prose is secondary. To subjugate our formulas to the same punctuation rules as ordinary prose is artificial and pedantic and ignores the true ordering of things. I think that many of us feel that to put a trailing, disembodied period after an eight-line equation is just plain silly—and it looks weird too, as it does not really seem to "belong." Does this period really inform the reader to take a break at the end of the expression? Listen: After spending the better part of an hour poring over such an equation, I have long since forgotten whatever sentence the formula was stuck in, and nobody needs to tell me to take a break. Like a gem in the sand, a formula cannot be integrated seamlessly into its surroundings.

I doubt that I have converted Mermin with my entreaties—the trenches are dug and the war rages on. I hope that I have provided ammunition and a morale boost to the valiant soldiers on my side of the front, and a pat on the back for PHYSICS TODAY and *Foundations of Physics*, two vanguard publications that do not needlessly

punctuate displayed equations.

JONATHAN P. DOWLING

Max-Planck-Institut für Quantenoptik
12/89 Garching, West Germany

David Mermin's rules for integrating equations into scientific text make a lot of sense. I was particularly gratified to see the case for numbering all displayed equations argued so persuasively.

However, there are problems, I believe, with Mermin's Math Is Prose rule. Mermin invites the reader to try leaving out the question mark in a question ending with an equation. I tried the converse exercise, writing a sentence *with* a question mark. Take Mermin's equation 1,

$$F = ma. \quad (1)$$

A reader looking at this equation might wonder, What did Newton have in mind when he wrote

$$F = ma.? \quad (2)$$

To another reader, looking at this equation, it might seem as though Newton doubted his famous discovery. Or was he just confused by the punctuation marks?

OK, I'll stop being awkward and accept the convention that in reading or referring to numbered equations one must distinguish between symbols that belong to the mathematical expression and punctuation marks, which do not. So I should have applied a math-prose filter before quoting Mermin's equation 1 (despite Mermin's postulate that math is prose). However, even without the fossil punctuation, equation 2 is ambiguous for the casual reader not aware of the particular punctuation convention being used.

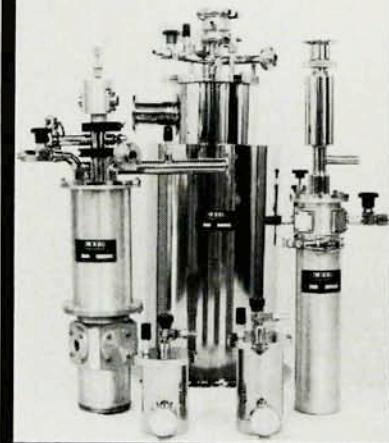
But what if Newton really had been a doubter and had written

$$F = ma?? \quad (3)$$

Problems? Not really, just apply the math-prose filtering rule. No, wait, first an auxiliary rule is needed: Neither Newton nor the writer is allowed to use exclamatory double question marks. This rules out the interpretation of an excessively worried Newton or an overemphatic writer. The second question mark must be the writer's and part of the prose, and the first Newton's and part of the mathematically abbreviated question "Is F equal to ma ?" The interpretation is unique. But at this point the reader may be wondering whether it might not be easier to explain Newton's law to an undergraduate arts class than the consistent application of the Math Is Prose rule to the

continued on page 96

QUALITY


STEP

BY

STEP

BY

STEP

CUSTOM MANUFACTURE DESIGN,
AND THEORETICAL ANALYSIS -
PERFORMANCE BY DESIGN.

FLOW CRYOSTATS AND CRYO
WORKSTATIONS

STORAGE DEWAR MOUNT
WORKSTATIONS

RESEARCH DEWARS AND
CRYOSTATS

LIQUID HELIUM TRANSFER LINES
HIGH VACUUM CHAMBERS
TEMPERATURE SENSORS
ELECTRONIC DIP STICK
CRYO CONTROLLER
DETECTOR DEWARS
PLUS MORE !!!!

CRYO
INDUSTRIES

of America, Inc.

24 Keewaydin Drive
Salem, NH 03079

TEL: (603) 893-2060
FAX: (603) 893-5278

QUALITY CONSTRUCTION WITH
LOWER PRICES THROUGH
EFFICIENT MANUFACTURING.

OPTICAL RAY TRACERS

for IBM PC, XT, AT,
& PS/2 computers

BEAM TWO \$89

- for students & educators
- traces coaxial systems
- lenses, mirrors, irises
- exact 3-D monochromatic trace
- 2-D on-screen layouts
- diagnostic ray plots
- least squares optimizer
- Monte Carlo ray generator

BEAM THREE \$289

- for advanced applications
- BEAM TWO functions, plus:
- 3-D optics placement
- tilts and decenters
- cylinders and torics
- polynomial surfaces
- 3-D layout views
- glass tables

BEAM FOUR \$889

- for professional applications
- BEAM THREE functions, plus
- full CAD support: DXF, HPG, PCX, and PS files
- twelve graphics drivers
- PSF, LSF, and MTF
- wavefront display too
- powerful scrolling editor

EVERY PACKAGE INCLUDES
8087 & NON8087 VERSIONS,
MANUAL, AND SAMPLE FILES

WRITE, PHONE, OR FAX US
FOR FURTHER INFORMATION

STELLAR SOFTWARE

P.O. BOX 10183
BERKELEY, CA 94709
PHONE (415) 845-8405
FAX (415) 845-2139

continued from page 15
readers of PHYSICS TODAY.

Perhaps we should agree to avoid encumbering equations with real or virtual punctuation marks other than periods and commas. Logically, the convention of mentally adding a period or comma to a mathematical expression to complete the prose appears neither better nor worse than the convention of mentally deleting mathematically meaningless punctuation added to a set of symbols explicitly identified as mathematics by an equation number. Ultimately, it boils down to a question of taste.

KLAUS HASSELMANN

Max-Planck-Institut für Meteorologie
12/89 Hamburg, West Germany

The Reference Frame article "What's Wrong with These Equations?" by N. David Mermin, reminded me of various battles that I have fought and lost. I too am one of those who is seen as flawed by, in the words of the author, "a preference for form over substance."

In some battles, collaborators have been the adversaries. Many years ago my coauthors ranged from zero through one in number and were either as pedantic as I or responsive to bullying. Now I have drifted into a field where large collaborations are necessary to get the work done and to make the effort look respectable. Papers are stitched together by many farflung colleagues, and the results are hardly inevitable. When I object to things like "the chambers were studied using a program . . .," I get puzzled looks from young punklets who have a perfect right to ignore me because they know so much more physics than I.

The problems addressed in the Reference Frame column have, however, more to do with the evils of editorial policy. From those, too, I have suffered. Books are seldom at issue because generally authors are able to prevail, especially now that few commercial publishers have editors that know enough of either physics or English to put up a serious fight. Journals are mixed in their policies, as Mermin points out, but at least the AIP research journals are quite reasonable. Here, I would like to comment on encyclopedias.

Encyclopaedia Britannica and *Encyclopedia Americana* present equations in various ways; some are poor but most are good. Paradoxically, it is scientific encyclopedias that often disappoint. The *Encyclopedia of Physical Science and Technology* (Academic) and the *Encyclopedia of Materials Science and Engineering*

(Pergamon) use equations properly as parts of sentences, but fail to put punctuation after the equations. It can be worse. With hesitation and regret, I must describe the style used in the *McGraw-Hill Encyclopedia of Science and Technology*, a useful and generally excellent work with which I have had an almost satisfactory relationship for years. There the equations are uncoupled from the text, with results such as the following:

...With this replacement, Eq. (18) holds. In other words, whereas the classical case

$$(xp_x - p_x x)\psi = i\hbar\psi \quad (18)$$

nonclassically conjugate variables x and p_x are numbers, obeying the commutative law in Eq. (19a), the quan-

$$xp_x - p_x x = 0 \quad (19a)$$

$$xp_x - p_x x = i\hbar \quad (19b)$$

tum-mechanical quantities x and p_x are noncommuting operators, obeying Eq. (19b).

Admittedly, I searched a little to find this specimen—it doesn't come from my article because I have learned to write defensively—but it illustrates accurately the editorial policy. That policy is firm. Long ago, I wrote the editor very solemnly that I was worried about severe damage to my literary reputation. The editor assured me even more solemnly that since the style is imposed uniformly, it should not reflect in any way on the contributing authors.

The problem is serious because the young consult encyclopedias. The issue is therefore one of the corruption of our youth.

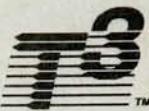
ROLF G. WINTER

College of William and Mary
10/89 Williamsburg, Virginia

MERMIN REPLIES: Would Warren H. White enjoy looking something up in a book that, eschewing the mindless convention that all pages have numbers, reserved them for only the really important ones? I've encountered just that frustration in working my way around books and papers whose authors felt that only a small fraction of the equations were splendid enough to deserve a number. Like page numbers, equation numbers help you to hunt down the one you're looking for. Otherwise why give them consecutive numbers at all—descriptive names would do as well. The more numbers you have, the easier it is to find your way around.

There are many ways to signal that an equation is important without depriving the unimportant equations of the numbers that help you find your way to the important ones. The best way is to write so vividly that it is obvious to the reader that something really noteworthy is about to appear on the page. But even without daz-

pling verbal fanfares for wonderful equations, there are plenty of other devices less disruptive than not numbering the undeserving ones. You can use stars for your prize equations, you can box them, or you can put the equation number in boldface. To be sure, *Physical Review* will fight tooth and nail to prevent you from exercising any of these useful options, but if we yield to that journal's timid notions of good style we will never be able to revive the noble art of scientific writing. We must insist.


Nor does it make sense to maintain that numbering equations conflicts with the Math Is Prose rule. Equation numbers are not part of the prose, as is evident from the fact that the punctuation mark appears directly after the equation, but well before the equation number, which resides at a respectful distance near the margin. Equations are no more undeserving of numbers because they are prose than a page of text is undeserving of a page number.

Jonathan P. Dowling is simply wrong when he asserts that virtually the only punctuation required by equations consists of commas and periods. Equally common, and just as important, is the legitimate absence of any punctuation mark, a degenerate form of punctuation that can reveal much about the relation of the equation to the text that follows, but only if periods and commas have also been provided in the contexts that require them. Why on earth should the reader have to guess or deduce whether what follows the equation is a new sentence, a new clause or an extension of the clause that was in progress when the equation made its appearance? Reading mathematical analysis is hard enough without depriving the reader of the kinds of clues available to the reader of any nonmathematical text.

I sympathize deeply with Rolf G. Winter on the agony and hazards of collaborative writing, particularly when the collaborators are unresponsive to bullying. One good trick is to make sure that the master file stays in your own computer, but networking has undermined even this simple stratagem. Even more discouraging is to submit one of those lovely papers written precisely to your taste without collaborators, only to discover that you have acquired one in the editorial office.

I think a proper use of quotation marks disposes of the particular issues raised by Klaus Hasselmann, but he started me worrying. One punctuation mark—the exclamation point—has an independent mathematical

IN THE WORLD OF SCIENCE ONE WORD PROCESSOR STANDS OUT ...

Scientific Word Processing System

Up to 25 levels for subscripts and superscripts

Advanced page layout and graphics import capabilities

"T3 is at the top of the heap in PC scientific word processing"
PC Magazine

"T3 can do big things for you"
PC Magazine, July, 1988

What you see on your screen is what you get!
No preview mode or mark up language used

"T3 makes very difficult, complex typing very easy to accomplish."
Jessie Stuyvesant, Secretary
Science Applications
International Corp.

Now with
WordPerfect and
T1 conversion

SOFTWARE RESEARCH, INC.

1900 Foster Road • Las Cruces, New Mexico 88001 USA • Phone: (800) 874-2383 or (505) 522-4600 Telex: 317629
WordPerfect is a registered trademark of WordPerfect Corporation. T3 is a trademark of the American Mathematical Society

THE T3 SCIENTIFIC WORD PROCESSING SYSTEM
An advanced solution for all word processing needs.

Mathematics

$$\left[\int_{a_1}^{a_2} x^2 dx \right]^2 = \int_{a_1}^{a_2} x^2 dx \int_{a_1}^{a_2} x^2 dx$$

$$\prod_{i=1}^n \left[\sum_{j=1}^{m_i} x_{i,j} \right] = \sum_{j_1=1}^{m_1} \sum_{j_2=1}^{m_2} \dots \sum_{j_n=1}^{m_n} x_{1,j_1} x_{2,j_2} \dots x_{n,j_n}$$

Language: Russian, English, and a dozen mathematical languages including: English, French, German, Spanish, Italian, Portuguese, Dutch, Polish, Czech, Hungarian, and others.

All the Capabilities: T3 is unique for any word processing task, including the most demanding of scientific and technical applications. T3 makes complex calculations, graphics, and references a snap. T3 makes it easy to create tables in a mark up language. T3 makes it easy to generate references. T3 makes it easy to design complex page formats with a variety of fonts.

Graphics Import: T3 is furnished with everything you need to create professional quality charts and graphs.

Actual page image

Call 1-800-874-2383

Circle number 60 on Reader Service Card

NEW

MODEL LTS-22-MAC CLOSED CYCLE Materials Analysis Cryostat

This versatile, new system has been designed to satisfy new requirements generated by the recent discovery of the exciting new group of "High Temperature Superconducting Materials."

- For Hall Effect, resistivity, Meissner measurements, etc., from <15 to 350 K.

GREATER ACCURACY

- Separate temperature sensors for control and sample readouts.
- Analog heater output from Series 4000 Temperature Controller gives superior control at low temperatures.
- Exchange gas sample environment virtually eliminates sample temperature gradients.

GREATER SPEED

- Easy-to-operate sample space airlock valve.
- Quick select 3-way valve for sample space, vacuum or exchange gas.
- No need to shut down refrigerator or break main vacuum during sample change.
- Larger, 3/4" diameter sample space permits multiple samples.

GREATER RELIABILITY

- Proven Gifford-McMahon refrigerator technology.
- Lower self-induced vibration.
- 10,000 hour service interval.
- Rigorous quality control.

PLUS

- Matching Meissner coil system
- Custom sample probes.
- QUICK DELIVERY
- Water or aircooled compressor
- No liquid cryogens

RMC CRYOSYSTEMS


OUR 21st YEAR
SERVING THE
RESEARCH
COMMUNITY

4400 Santarita Ave., Tucson, AZ 85714

(602) 889-7900; TELEX 24-1334

FAX: (602) 741-2200

Circle number 61 on Reader Service Card

See inside vacuum or pressure vessels

Remote Visual Inspection (RVI) with Olympus rigid and flexible scopes lets you see magnified, brilliantly lighted images inside vessels under vacuum or high pressure. You will be able to observe and record objects and phenomena, at close range, that you never could before.

Pressures as high as 2,250 psi (155bars). Vacuums to 10^{-6} torr and ultrahigh vacuums to 10^{-9} torr. Temperatures to 1000°C.

Integrated illumination. Fiberoptic light guides inside scopes carry cool, brilliant illumination to the site. Lighting is even and high Kelvin temperature. Strobe light, ultraviolet, infrared and other special wavelengths are also available.

Image analysis. Scope images can be seen on a video monitor for observation by groups and for documentation. Olympus systems let you digitize color images and perform analysis, including measurement to one part in 1024, gray scale histograms, image enhancement, particle counts, area calculations, and much more.

Gimballed access port lets you insert the rigid scope deep or shallow and sweep through a wide arc for complete scanning of chamber.

For more information, write or call today.
Olympus Corporation,
Industrial Fiberoptics Division,
4 Nevada Drive, Lake Success, NY 11042
516-488-5888, FAX 516-222-0878.

OLYMPUS
INDUSTRIAL

Circle number 62 on Reader Service Card

meaning. Ordinarily this causes no confusion, because if the exclamation point appears as a factorial sign at the end of an equation that does not end a sentence, then the text that follows will begin with a lower-case letter; conversely if the equation culminates a thought so exciting as to require an exclamation point, this will be signaled by the next word's starting with an upper-case letter. Ambiguity might result if that word were a proper noun, but even then it should almost always be clear from the syntax whether or not it heralds the start of a new sentence.

If, however, we allow the punctuation mark "!"—commonly used to indicate shocked disbelief—then we are in deep trouble, as the following specimen reveals:

Would you believe somebody who maintained that

$$24 = 4!?$$
 (1)

Either way you read it, the sentence has definitely ended. Yet the answer can be "Absolutely!" or "Definitely not!" The solution is simple. We must ban "!" and express our shocked surprise only by "?!"—a small price to pay if it helps revive the noble art of scientific writing. Could anyone possibly disagree?!

N. DAVID MERMIN
Cornell University
Ithaca, New York

4/90

Publicity's Place in Science

Robert Jones (September 1989, page 142) writes: "Newspapers and press conferences are no way to disseminate scientific results. They are a way of seeking publicity, plain and simple, and need to be discouraged." This coin has two sides and is not, as it might appear on the surface, a simple and straightforward issue. By virtue of the computer revolution and other forces, we are entering a period where small high-technology companies are engaging more and more in basic, fundamental studies of interest to pure as well as applied science. Some of us are paying out of our own pockets to do basic research in our own private facilities, for reasons such as protecting intellectual properties. (I have been doing this, as a matter of public record, for over a quarter of a century.) In recent years non-PhD engineers have won Nobel Prizes, and this trend can only continue.

If I were Jones, I would not be concerned with the construction of homemade hydrogen bombs so much as with the ethical and moral standards of the academic community.

Referees should be named and required to identify themselves; otherwise, we may soon be unable to publish a paper without a lawsuit. In view of the number of professors and others who are operating various businesses on the side, there always exists the potential for a conflict of interest.

Our nation needs the contribution of self-funded individuals, as well as small high-tech startups, if it is to survive. With regard to prepublication public relations, shareholders also have certain rights. PR hastens commercialization by attracting money, talent and joint venture partners. (Thomas Edison, incidentally, was the master at getting funding this way.) Publicity can also speed development, by inducing other people doing similar work to "come out in the open." And while public announcements should not circumvent the normal review process, releasing one's findings after a paper has been in a journal's hands for several months can sometimes move that process along.

News conferences and press releases, like most things in life, have their place. Ultimately, therefore, the bottom line is the *truth* and strength of the documentation for the claims being made. All of us, as individuals or organizations, have the right to survive, and publicity in the media is often the only way out.

MINAS ENSANIAN
Olean, New York

9/89

Learning Compelled Is Learning Repelled

I agree with James F. Jackson (January, page 112) that physical scientists could stand to have a better image in the eye of the typical high school student. However, I think Jackson should reconsider his statement "Skills' are not as important as knowledge." Forcing scientific knowledge on students tends to turn them off, rendering them antiscientific; only the very few will become scientifically literate or want to pursue scientific careers when taught this way. I question whether it is wise to spend more money on compulsory science education after decades of poor results.

Morris Shamos addresses the issue of achieving scientific literacy in America and offers alternatives in an excellent and thought-provoking article entitled "The Lesson Every Child Need Not Learn" (*The Sciences*, July-August 1988, page 14).

SHANE D. MAYOR
Forest Hill, Maryland ■

2/90