
DYNAMICS OF CONFINED
MOLECULAR SYSTEMS

By modeling restricted geometries with well-characterized
porous silica glasses, experimenters can determine a single
geometric parameter that relates finite-size effects to observed
dynamic and thermodynamic behavior.

J. M. Drake and J. Klofter

The dynamic and thermodynamic properties of molecular
systems are known to be modified by confinement in very
small spaces. However, making explicit and unambiguous
connections between the geometry of the confining space
and the molecular behavior has proven to be difficult, and
the connections, when made, are frequently controversial.
Nonetheless studies show that within a family of similarly
prepared porous materials, the effect of finite size on the
behavior of confined liquids and gases scales with a single
geometric property of the pore space.

Systems characterized by spatial restrictions and low
dimensions—such as zeolites, membranes, polymers, and
porous glasses and minerals—are often found in applica-
tions where the pore diffusion of gases is a key underlying
process (as in some types of heterogeneous catalysis), or
where liquid diffusion through porous media is important
(as in various chemical separation processes). The key
issues, then, in understanding these processes—which are
fundamental to new developments in such diverse fields
as medicine, biochemical engineering and petroleum
engineering, to mention only a few—are several: What
properties of the porous medium, such as size, surface area
or the chemical nature of the interface, permit selective
separation? What properties of the medium affect molec-
ular transport? What effect does finite size have on the ba-
sic properties of liquids and gases (for example, viscosity or
freezing point), and at what point does hydrodynamic
behavior break down?

In this article we focus attention on models of
restricted geometries that have proven to be ideally suited
to the study of confined liquids and gases—namely porous
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silica glasses, which make up a large class of materials
used throughout the chemical industry. We present
examples of studies that attempt to connect the dynamic
and thermodynamic features of confined molecular sys-
tems to a single geometric characteristic of the confining
medium: its mean pore size. Because the pores of these
glasses have large internal surface areas, we pay special
attention to the microscopic structure of the pore surface
and give examples that show how modifying the chemical
nature of the interface can change its adsorption and
wetting properties. Although researchers have examined
these systems by a variety of techniques, we highlight
studies based on the use of several types of short-pulse-
laser optical probes. As we shall see, different optical
techniques can give pictures of different length scales
within the porous glass and can therefore provide a direct
measure of the degree to which the properties of confined
liquids and gases scale with the mean pore size.

Model systems
Researchers in many disciplines use porous silica glasses
as model restricted geometries to study the dynamic and
thermodynamic properties of confined molecular systems.
Because these glasses are optically transparent, they are
ideally suited for probe measurements with short-pulse
lasers. In addition, these glasses are mechanically stable
and chemically inert to many commonly used solvents.

By varying the method of preparation, one can create
glasses that have a broad range of morphological features.
The intraparticle pore space of these glasses is character-
ized by a pore size distribution that peaks around a mean
pore radius Rp, which can be as small as 20 A or as large as
2000 A. The interfacial pore surface area S also varies
over three decades, approaching 1000 square meters per
gram for microporous glasses and 1 m2/g for macroporous
areas. i?p and S/ V, the ratio of the pore surface area to
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Porous silica glass Si-4000, with a mean pore radius Rp of 2000 A, as seen by scanning electron
microscopy. Figure 1

the pore volume, are the most important parameters
characterizing the geometric features of a porous glass.

Of the many commercially available porous glasses,
one has received considerable attention over the last 40
years: the phase-separated borosilicate glass made by
Corning and known by the tradename Vycor. This glass is
prepared from a melt with a typical composition of 75%
SiO2, 20% B2O3 and 5% Na2O. When quenched near the
consolute (or critical) temperature (inside the immiscibi-
lity gap, where the phases begin to separate), this melt can
form silica-rich and boron-rich phases. Removing the
boron phase by acid leaching leaves a well-defined, highly
connected pore network with a pseudoperiodic structure.1
Figure 1, an electron micrograph of a sample of silica Si-
4000 (Rp ~ 2000 A), reveals a random homogeneous pore
network that looks as if it were created by the sintering of
spherical glass particles.

Porous silica can also be prepared by sol-gel tech-
niques. Starting from a sol or solution, one uses an
aggregation or polymerization growth process to form a
gel. The gel state can be processed further thermally to
extend the range of geometric properties of the final glass.
Merle W. Shafer, David D. Awschalom and James
Warnock prepare sol-gel glasses by the hydrolysis of
alkoxides and the gelling of colloidal silicas.2 This
approach leads to a series of well-characterized porous
glasses with a broad range of pore sizes and surface-area-
to-volume ratios. Commercially prepared sol-gel glasses,
are available with a variety of pore sizes and S/V values,
and can also be used to study the behavior of molecular
systems in restricted geometries.

A difficult problem in using these materials to study

dynamic and thermodynamic processes of confined molec-
ular systems is the separation of the role of finite-size
effects associated with Rp from the influence of the pore
surface. In confined systems the surface often introduces
spatial inhomogeneity in the concentration of solute and
solvent molecules due to specific molecular interactions at
the pore boundary, such as wetting, adsorption or chemi-
cal reaction. Frequently the characterization of porous
glasses is neglected or is problematic, complicating the
interpretation of experimental results from such systems.
Problems associated with surface effects are far less
significant when conducting similar studies in homoge-
neous environments.

Therefore the use of porous silica glasses as model
restricted geometries requires investigators to invest
considerable time and effort in characterizing both the
mesoscopic and microscopic structures of the glasses.
Experimenters have used a variety of techniques to make
such characterizations3:
> Measuring the adsorption properties of gases and
liquids—particularly the adsorption and desorption of N2
at 77 K—has a long history as a method for determining
the accessible pore surface area, pore size distribution and
saturated pore volume. Although not always reliable for
very small or large pores, adsorption studies can provide a
useful starting point in characterizing porous silica
glasses.
[> Mercury porosimetry can also be used to measure pore
size, volume distribution and volume porosity <̂ v; specific
surface area; and particle size distribution. Because this
technique relies on the intrusion of mercury under
pressure, difficulties can arise from incomplete intrusion
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Small-angle x-ray scattering curves
l(q,£) for four porous silica glasses: Si-
40, Si-60, Si-100 and Si-4000 (a).
Curves are scaled according to equation
2 and appear superimposed, b:
Unsealed, measured scattering curves
lo(q) for three of the four glasses: A,
Si-100 (/?p—60 A, 5—281 m2/g,
5 / l / ~ 2 X i 0 6 c m - 1 ) ; B, Si-60 (/?p—35
A, 5—391 m2/g, 5 / 1 / — 4 x 1 0 6 c m " 1 ) ;
C, Si-40 (/?p—18 A, 5—768 m2/g,
5/1/—1 X10 7 cm" 1 ) . Figure 2
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or from compressibility of the solid.
D> Electron microscopy, both scanning and transmission,
can be used to visualize the detailed structure of the mass
and its boundary in silica glasses. When sufficient
resolution is available and the structure of the material
remains intact after the sample is mounted, the resulting
digitized image can provide much of the same information
as the two preceding techniques.
[> Small-angle x-ray and neutron scattering have also
provided structural information on porous glasses.4 Using
SAXS one can conveniently study the structure of these
materials on many length scales.

A drawback of each of these techniques is that to
interpret the data, one requires either a model or some
additional corroborating information. However, applying
all of these techniques together can provide useful and
sometimes detailed structural pictures of porous silica
glasses.

Correlating geometry and scattering
As part of an effort to further characterize the space-
filling morphology of a family of porous silica glasses,
recent SAXS studies have been used to identify a
characteristic length in the glasses, £ = Rp, which appears
to scale their general morphological features over a range
of structural parameters—mean pore radii between 18
and 2000 A and pore surface areas from 770 to 20 m2/g. In
other words, within a series of similarly prepared porous
silica glasses, although the characteristic radius varies,
the overall geometric properties are essentially identical.

For a three-dimensional, isotropic, random, porous
medium, we can use autocorrelation functions to obtain
the probability of encountering a void (the mass autocorre-
lation function) or an interface (the surface autocorrela-
tion function) at certain distances from a given point, the

"origin." The mass autocorrelation function Fv(r) is
defined as

where ipm (r) equals 1 in the solid and 0 everywhere else.
The surface autocorrelation function can be defined
similarly:

AnV JAW

where ips (r) equals 1 along the surface of the mass and 0
elsewhere. Below we demonstrate that the mass autocor-
relation function can be used to calculate the SAXS
spectrum. (Later we show that the surface autocorrela-
tion function is related to the properties of direct energy
transfer in these materials.)

The observed SAXS pattern can be related to the
structure of the glass through the density fluctuation
autocorrelation function, which differs from the mass
autocorrelation function by a constant:

(/iv(0)^v(r)) = Tv(r) - (1 - <£v
2)

where ,uv (r) is the density term; /iv (r) equals 1 in the solid
and 0 in the void. The SAXS spectrum I(q)—where q, a
function of the scattering angle, is proportional to the
inverse wavelength—can then be calculated using

- 1 d
q Aq

Re dr(iuv(0)-/uv(r))exp(i9r) (1)

Pierre Levitz and coworkers have recently demonstrated
the validity of this approach by calculating the x-ray
spectrum using equation 1 and the binary data from a
digitized, high-resolution transmission electron micro-
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Pore interface of a silica glass that has been
chemically modified by a linear alcohol. Red
circles represent the —CH2—O— functional

groups, and green lines represent the alkyl
chains, which extend into the pore region

(deep blue). Figure 3

graph image of an ultrathin section of a porous glass.4 The
calculated spectrum compares favorably with the mea-
sured spectrum.

Another, more common way to correlate SAXS and
the characteristic scale length of the glasses is to inspect
the behavior of I(q) and analyze one of the asymptotic
limits as power-law scattering,

As shown by G. Porod in 1951 for porous materials, in
which the scattering is dominated by the surface of the
pore, for smooth surfaces P = 4 at large q. Silica glasses
exhibit5 a /? = 4 power-law scattering for values of qg
greater than 1, the scattering regime in which SAXS is
sensitive to length scales on the order of the mean distance
between interfaces. Thus in the /? = 4 power-law scatter-
ing regime SAXS probes the morphology of a single pore.
On the other hand, for qg less than 1 SAXS is sensitive to
the organization of many pores—the structure of the mass
itself.

The exponent fi need not, however, be an integer.
S. K. Sinha and Robin Ball6 have generalized the meaning
of the power-law exponent for scattering from porous
materials by relating J3 to the fractal dimension dm of the
spatial organization of the mass while concurrently
treating the surface of the mass as a fractal of dimension

I3=ds- 2dm

According to this interpretation, a fractally rough inter-
face is responsible for non-Porod (/? /4) exponents.

Scattering scales with pore size
The scaled x-ray scattering from four porous silica glasses
in a homologous series is shown in figure 2. The scattering
pattern reveals three characteristic regions in q. At large
q, where qt, is greater than 1, there is a "Porod-like" power-
law scattering, characterized by an exponent of 4. This
Porod-like behavior is a general characteristic of these
silicas and indicates that the surface of the pore scatters
like a random smooth interface and not like a fractal
surface. In fact, /? = 4 is consistent with Sinha and Ball's
generalization of the power-law exponent, because for a
smooth Euclidean surface ds = 2, and for a homogeneous
distribution of mass dm = 3. (There are samples where
the exponent departs from 4, as shown in the inset of
figure 2, but the length scale for this departure, qg>W,
approaches the atomic scale. Because the scattering
intensity is weakest on the atomic scale, it is difficult to in-
terpret the scattering for this region.) At small q, above
the plateau qg<l, a second power region appears. This
scattering is from structures in the glass that are larger
than Rp. The exponent for this power-law scattering is
often approximately 3, but the origin of this scattering is
not well understood.

The plateau seen in I(q), which occurs for q near 2RP,
is a common feature of all these porous glasses. It has
been shown by Drake, Levitz and Sinha that the overall
scattering features for a group of silicas having mean pore
sizes ranging from roughly 20 to 2000 A scales with their
characteristic pore size as

I(q,£) = Io(£) FlqO (2)
where the value of g is obtained from N2 desorption
measurements.7 The SAXS curves for four different
glasses, shown superimposed in figure 2, were scaled
according to equation 2. This scaling relationship has
been shown to hold for other porous silica glasses by Paul
W. Schmidt and coworkers.8 That such a scaling relation-
ship holds even approximately over such a large range in
Rp suggests that the morphological features of these
materials must remain unchanged as Rp and S vary over
two decades. We may therefore infer that the electron
micrograph of Si-4000 (figure 1) characterizes the space-
filling organization in the entire series of porous glasses:
an isotropic, random space-filling mass whose structure
suggests a growth process based on the aggregation of
spherical particles and having, as also suggested by the
SAXS data, a smooth pore interface.

Because a single length Rp scales the general
morphology for a family of porous glasses, these materials
are ideally suited for studying the effect of the size of the
spaces confining molecular systems on their dynamic and
thermodynamic properties. Warnock, Awschalom and
Shafer, using sol-gel glasses to study the geometrical
supercooling of liquid oxygen, demonstrated how Rp scales
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the thermodynamic properties of a confined liquid.9 They
showed that the freezing-point depression AT of confined
liquid oxygen is determined by the characteristic size of
the space according to the relationship

where Ahf is the heat of fusion, TQ the bulk freezing point,
Vm the molar volume and AIT the difference between the
solid-wall and liquid-wall interfacial energies. These
researchers have observed that this relationship also holds
for ethanol. Their results suggest that similar behavior
will be found in other porous materials for which Rp is the
important scale length that characterizes the size of the
spatial confinement.

Modifying the pore interface
The thermodynamics of a confined liquid can be shown to
depend explicitly on Rp. Are the dynamic properties of
molecular liquids also affected by confinement? The
dynamic properties of liquids are in fact affected by both fi-
nite-size effects, characterized by Rp, and interactions
with the pore interface. In an environment that has large
surface area, a high percentage of the solute or solvent
molecules interact with the container interface. Such
significant surface interactions create a concentration
gradient that extends from the interface tens of angstroms
into the bulk and often partitions the molecular popula-
tion into distinct regions, each with its own dynamical
features. One can study the molecular dynamics of
systems in restricted geometries using a variety of
experimental techniques.10 These techniques can be
divided into two general categories: those that measure
the behavior of the bulk liquid or gas directly, and those
from which one infers the behavior of the bulk from the dy-
namical properties of a low concentration of probe
molecules. While the underlying physical laws describing
the dynamics are the same for both, the specifics of each
molecular system must be well known and understood in
the homogeneous limit (that is, where S/ V approaches
zero).

Although the properties of the pore interface are by
themselves of considerable scientific interest (for example,
in the study of gas adsorption, liquid adsorption, capillary
condensation or wetting), the interface can sometimes be
modified in a systematic way to reduce its specific
chemical influence on confined liquids. In one successful
method of modifying the pore interface, hydrocarbon
molecules are bonded to the chemically active SiO2 surface
sites. The most commonly used functionalizing reagents
are alcohols and alkylsiloxanes with alkane tails.
Through the use of functionalized hydrocarbon chains of
varying lengths, the new derivatized surface can be made
to extend between 3 and 25 A into the pore space. The der-
ivatized pore surface, which is now hydrophobic rather
than hydrophilic, is represented schematically in figure 3.
Recent work by Drake and Jack Johnson, at Exxon
Research and Engineering, shows that derivatizing the
pore interface with molecules of varying chain lengths not
only modifies the chemical nature of the interface but also
makes it possible to vary Rp systematically for any single
porous glass, thus increasing the usefulness of these
materials as model restricted geometries. Figure 4 shows
how the mean pore size diminishes uniformly with
increasing hydrocarbon chain length for Vycor derivatized
with C,-C]0 linear alcohols or C8-C]8 alkylsiloxanes.

Viscosity of confined liquids
The question of whether the viscosity of a liquid in a pore is
different than that of the bulk liquid is particularly
important when one is attempting to describe molecular
transport and reactions in porous materials. The simplest
and most direct way to relate the diffusion coefficient D
and the viscosity rj in transport problems in liquids is
through the Stokes-Einstein relation

D =
kBT

which describes the hydrodynamic behavior, as a function
of temperature, of spherical objects of radius rm in a liquid
of viscosity rj. One approach to measuring the viscosity of
a confined liquid is to relate the rotational time rr of the

Mean pore size of Vycor derivatized with
Q-C-io linear alcohols (red dots) and C8-C18

alkylsiloxanes (black dots) is roughly
proportional to the number of alkane-chain

carbons n. The inset illustrates how N2
desorption studies can reveal the mean pore

sizes in underivatized (nude) and Ci0-
derivatized porous glasses. The Kelvin

equation relates pore volume
Vp to Rp. Figure 4
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Fluorescence depolarization (a) of 1 X 10 6 molar
rhodamine 6C in acetonitrile in Vycor that has been modified

with 1 -hexanol (n = 6). The spike near the origin represents
the instrument response to the excitation pulse. In b, the
rotation correlation time rr of rhodamine 6C dissolved in
acetonitrile in Vycor is normalized to the bulk value and

plotted as a function of mean pore size for d-C10-derivatized
pores. The shaded region indicates the range of pore sizes

for which rotation is strongly hindered. The inset depicts
adsorption isotherms of rhodamine 6C in acetonitrile in

derivatized and nude vycor glasses. Figure 5

solvent or solute molecule to rj through the Stokes-
Einstein-Debye equation

Vvmf

a 1.0F

kBT
(3)

where f— 1 in the case of a spherical molecule, but can be
adjusted for the correct shape and boundary conditions of
the diffusing molecule; um is the molecule's hydrodynamic
volume.

Two distinct problems can be addressed through
measurements of rr. In one approach rr, which should be
related to the viscosity when the Stokes-Einstein-Debye
approximation strictly applies, is measured directly on a
neat liquid. In another approach, one measures the
rotational time of a probe molecule (at very low concentra-
tion) in a continuum of solvent molecules. Again, if
equation 3 applies, both approaches should provide similar
information on rj. The common experience is that the
approximations needed to apply equation 3 often break
down, and one must consider issues relating to the
molecular free volume, nonstick boundary conditions and
corrections for the nonspherical nature of molecules.
Below we consider sets of experimental results for each of
the above-mentioned approaches.

Warnock and coworkers,11 using a subpicosecond
optical birefringence technique, measured rr for carbon
disulfide (CS2) and nitrobenzene (C6H5NO2) as neat liquids
in a series of porous sol-gel glasses. Their results for CS2
in a family of glasses where 2RP was varied from 44 to 375
A clearly show that rr does not change with Rp but retains
its bulk value, 1.5 picoseconds. However, for nitrobenzene
in underivatized glasses rr could not be described by a
simple exponential but rather had a biexponential behav-
ior. Setting one exponential to the value of rr in the bulk,
Warnock and coworkers recovered a second time, rj",
which describes the hindered rotation of the nitrobenzene
confined to a layer near the pore interface in an
underivatized glass. The interfacial nitrobenzene layer
was estimated to be 12 A thick, and the value of rf
suggested that the viscosity of nitrobenzene near the wall
is three times that of the bulk. When the pore interface
was derivatized with ethanol, rr was again described by a
simple exponential equal to the bulk value of 38.6 psec.
Thus in these two examples there is no clear evidence of rr
scaling with Rp. Probes with short time scales are
sensitive to small length scales and, as shown here,
provide little clue of the nature of the pore when they are
sensitive to a length scale much smaller than Rp.

In the alternative case, where a fluorescent probe
molecule is dissolved in a solvent, the authors measure the
rotational time of the solute by a polarized picosecond
laser-pulse technique and follow the time evolution of
fluorescence depolarization. We use an optical probe with
a well-known bulk rr—the dye molecule rhodamine 6G.
Using a series of derivatized porous Vycor glasses, we can

Strongly Q
hindered U
rotation w

EQUILIBRIUM CONCENTRATION

26 28 30 32 34 36
MEAN PORE SIZE Rp (A)

study the local viscosity experienced by the probe as Rp is
changed systematically. The solvent, acetonitrile
(CH3CN), a nonassociating (aprotic, nonhydrogen-bonding)
polar solvent, is repelled by the nonpolar hydrocarbon
layer, and an interface is created between the two
immiscible phases: Both the probe and the solvent are
expected to be excluded from the derivatized layer.

The molecular reorientation time is obtained from
measurements of the vertical and horizontal components
of the polarized fluorescence decay, Ivv(t) and Ivii(t) as
shown in figure 5a. In the limit of simple well-behaved
systems, rr is related to the measured quantities Ivv(t)
and /VH W through the polarization anisotropy r{t):

r(t) = -
= r0 exp( - t/rr)

where r0 is the steady-state anisotropy. In this system a
small population of probe molecules is bound to the Vycor
surface at vacancies formed at random underivatized sites.
The presence of adsorbed probes adds a second exponential
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term to the polarization anisotropy. The adsorption
isotherm, shown in the inset to figure 5b, for rhodamine
6G (dissolved in acetonitrile) on Vycor confirm the
existence of surface vacancies for some derivatized glasses.
While recognizing that a small percentage of the probe
molecules are immobilized because they are adsorbed, we
assume that the probe population in the pore is randomly
distributed in the liquid; thus the results illustrated in
figure 5b are quite dramatic. The data show that the
effective local viscosity experienced by the probe is larger
than in bulk solution and increases as the pore volume is
systematically decreased. This result is at least qualita-
tively consistent with the idea that in the limit at which
the hydrodynamic radius approaches the size of the pore
radius—the "strongly hindered" regime—the simple hy-
drodynamic picture may no longer strictly apply.12

Direct energy transfer
We now connect the structural details of the model porous
systems to dynamical processes that occur within them.
As the mass autocorrelation function Fv(r) has been
shown to be related to SAXS intensities, the surface
autocorrelation function can be related to direct energy
transfer. Direct energy transfer is a resonant transfer of
electronic excitation from excited donors to acceptor
molecules; the idea was introduced as early as 1949 in
studies of bulk solution by Th. Forster. Applications of the
direct-energy-transfer method to complex systems such as
porous glasses provide an additional tool for characteriz-
ing the spatial distribution of the pore interface.

The basic idea behind direct energy transfer in
confined systems, shown schematically in figure 6, is to tag
the pore surfaces of a transparent porous glass with a
random distribution of donor molecules (at very low
concentration) and acceptor molecules (at 100 times the
donor concentration). A donor is initially excited, and the
excitation is transferred to the acceptors with rates W(r)
that depend on the donor-acceptor distance r. At the low
concentration of donors used, excitation transfer among
them is insignificant. In this type of experiment one
follows the time evolution of the fluorescence of the donor.
One generally chooses a donor-acceptor pair that is
characterized by dipole-dipole interactions and therefore
has an energy transfer rate

W(r)_(Ro)el

where rf is the fluorescence lifetime of the isolated donor
and Ro is the critical Forster radius, the donor-acceptor
distance at which the energy transfer rate equals the
fluorescence decay rate rf ~ 1. Ro provides an estimate for
the length scale over which direct energy transfer is a
sensitive probe. It is this length scale that, together with
Rp, determines the characteristics of the donor relaxation
in each of the series of porous silicas. A more realistic
length scale, which takes experimental conditions into
account, isi?max , equal in this case to approximately 1.5i?0.
This length scale, which acts in these studies as an "optical
yardstick," provides a picture of a slightly larger area than

Direct energy transfer in a pore from an
excited donor molecule (green) to nearby
acceptor molecules (red). Figure 6

does the "rotational yardstick."
The fluorescence decay pattern <t>(t) of the donor is

generally given by13

= expf - J--p(drp(r)\ 1 - exp[ - tW(r)] ]
I Tt J

(4)

where p is the density of acceptors (and is much less than
1) and p(r) is the site-density function, which is related to
the surface autocorrelation function. Figure 7 shows the
observed fluorescence decay for Si-100. The upper curve
represents the decay of an isolated donor on the surface,
and the lower curve shows the decay in the presence of ac-
ceptors. Equation 4 is central to the relationship between
the dynamical observable <$>{t) and the structural informa-
tion folded into p(r). There are two ways to interpret the
relationship between the fluorescence relaxation and/j(r):
t> In the case of fractal surfaces of dimension ds, fir) is
proportional to r " ~ 3. The donor relaxes according to

= exp[(-t/Tt)-Atd'/e] (5)
where A is time independent. Equation 5 connects the
decay pattern <I>(0 to the surface geometry described
through ds. This equation has been extensively applied by
various groups in the study of porous systems and various
molecular assemblies.10

> For regularly shaped pores equation 4 yields temporal
crossovers that depend on the local length scales Rp and
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Ro. As an example consider an often-used model for
simple pores: an infinite cylindrical pore of radius Rp with
donor and acceptor molecules randomly distributed on its
surface. From such a system one obtains a two-dimension-
al decay pattern at short times, corresponding to energy
transfer to acceptors close to the donor. At longer times
the decay crosses over to one-dimensional behavior. In
terms of equation 5 this means that one should observe the
Euclidean limits ds = 2 and ds = 1 for short and long
times, respectively. The crossover itself is determined by
the lengths Rp and Ro:

exp[-Bt1/S],

exp[ - a 1 ' 6 ] ,

t<rt(Rp/Rof

t>r[(Rp/Rof
Such crossovers, because they depend on Rp, are finger-
prints of the spatial restrictions. Nonetheless the decays
over certain limited time windows may be fit to equation 5
with a noninteger ds. However, a noninteger ds does not
imply that these surfaces are fractal in nature, but result
from a time averaging of the Euclidean limits.

Direct-energy-transfer experiments have been carried
out on the characterized family of porous silicas Si-40, Si-
60 and Si-100, with rhodamine 6G and malachite green as
the donor-acceptor pair.14 Because Ro for this pair is 57
A, direct energy transfer senses lengths up to 85 A CRmax).
Fitting the results for the three porous glasses to equation
5 produces ds values of 2 for Si-100 and Si-60, and 3 for Si-
40; these numbers represent the regular Euclidean limits
of equation 5. The relationship between Rp (from struc-
tural characterization) and Rmax (the optical yardstick),
which determines what features of the morphology are
probed by direct energy transfer, makes it possible to
corroborate these results with the characterization studies
for these systems. When Rp is greater than Rp only
length scales less than Rp are probed by direct energy
transfer. The two-dimensional energy transfer behavior
suggests that the pore surface is smooth. When Rp is less
than Rma,x interpore direct energy transfer exhibits ds = 3
behavior, as shown above.

The Knudsen regime
When gas molecules are spatially confined within pores,
two scattering processes have to be considered: molecule-
molecule scattering, which has a mean free path
I = kB T/42ircr2P where a is the collision diameter of the
molecules and P is the gas pressure; and molecule-
boundary scattering, dominated by the pore size Rp. Here
we ignore contributions of adsorbed molecules that diffuse
along the surface. The regime established at pressures
low enough and pore sizes small enough that the mean free
path is much larger than the mean pore size is called the
Knudsen regime. Under such conditions the molecules
scatter more often from the boundaries than from one
another. Thus in this limit the geometry, again through
the scale length Rp, determines the molecular diffusion15

DK=±g(v)Rpb
(6)

ity, M is the molecular mass and g is a proportionality
factor related to the structure of the glass, and thus
depends on the porosity, tortuosity and so on. Although
originally developed for a cylindrical pore, equation 6
holds in those more general cases where the pore is well
characterized by Rp.

In the Knudsen regime one can follow a diffusion-
limited reaction in a series of porous glasses. Figure 8
shows how diffusing acceptors, or quenchers, move within
the pore network and quench an initially excited adsorbed
donor molecule on encountering it. In a way donor
quenching due to Knudsen diffusion is analogous to donor
relaxation by direct energy transfer. In energy transfer
the boundaries restrict the locations of the adsorbed
molecules. In Knudsen diffusion the same boundaries
restrict the motion of the gas-phase acceptors. In both
cases it is possible to relate the morphology to the decay
pattern of the donor, which can be calculated assuming
that the pore space in the glasses is a three-dimensional
and homogeneous, yet tortuous, network. The donor is
expected to decay exponentially with rate K given by

where rL is the lifetime of the isolated donor and Kq is giv-

10 15 20
TIME (nanoseconds)

25 30

where <y> = (8kB T/vM)1'2 is the molecules' mean veloc-

Fluorescence decay for rhodamine 6C
adsorbed onto the pore surfaces of Si-100 can
be fit to a single exponential (upper curve).
The lower curve shows the fluorescence
decay of the adsorbed donor rhodamine 6G
in the presence of the acceptor malachite
green. The instrument-response spikes are
also shown. Figure 7
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en by a Smoluchowski expression for donor annihilation
by diffusing acceptors:

where rAB is a reaction radius. The donor decay rate
scales with Rp and with the gas pressure: Within the
Knudsen regime, the larger the pore size, the more
efficient is the quenching process. This mechanism breaks
down for very large pores where I is much smaller than
Rp, the limit at which Knudsen diffusion is no longer
effective, and simple diffusion of the quenchers toward the
donor, dominated by Z, takes over.

Experimentally, the decay of initially excited benzo-
phenone, which is adsorbed on the pore surface and
quenched by diffusing oxygen gas molecules, has been
studied using time-resolved diffuse-reflectance transient
absorption.16 The quenching rates show linear depen-
dences on both the mean pore size and the pressure,
confirming Knudsen behavior.

Molecular quenching within pores in the Knudsen
regime provides an example of a monomolecular diffusion-
limited reaction in a restricted geometry. Raoul Kopel-
man and coworkers at the University of Michigan have
recently studied bimolecular reactions in restricted geo-
metries by following delayed fluorescence in triplet-triplet
annihilation.17 Another spectroscopic method to probe
pore surface morphology, proposed by Pierre-Gilles de
Gennes of the College de France would require measuring
the relaxation of diffusing excited molecules which are
quenched when they encounter the pore surface.18

Translation^ diffusion
A central issue of the problem of dynamics in restricted
geometries is how molecular diffusion coefficients are
modified in confined environments relative to their values
in the bulk. Although this subject has been extensively
studied for many years, basic questions related to diffusion
in confined spaces are still open. The wide use of porous
systems in molecular separation and catalysis makes
diffusion in porous media of major importance.

Generally we can identify a number of limits for
diffusion in restricted spaces: free gas diffusion (dominat-
ed by molecule-molecule scattering) and Knudsen diffu-
sion (dominated by molecule-pore scattering), both dis-
cussed above in relation to gas-phase quenching reactions;
surface diffusion; diffusion in confined liquids; and diffu-
sion in bulk liquids. The conditions for each of these limits
vary from system to system, as do the values of the
diffusion coefficients in the separate regimes of gas-filled,
liquid-filled and partially filled (gas and liquid) pores.
Translational diffusion in gas-filled pores has been ad-
dressed in the section on the Knudsen regime. Here we fo-
cus on liquid-filled and partially filled pores.

The study of diffusion in liquids embedded in pores
has been approached by means of forced Rayleigh scatter-
ing,19 pulsed-gradient nmr20 and light scattering.21 Be-
cause we cover here mainly optical techniques, we will
describe how forced Rayleigh scattering is used for
measuring molecular diffusion in solution in transparent
porous systems.

Forced Rayleigh scattering is essentially a transient
grating experiment. One uses a probe molecule that
undergoes photoisomerization from a trans isomer to a cis
isomer with different optical properties. Two laser beams,
which are crossed to create an interference pattern, are
used to induce the isomerization and thereby create a
refractive-index diffraction grating of periodicity L in the
sample. A third laser is Bragg scattered from this grating.
As the cis isomers diffuse, the grating pattern fades away,
a process that is observed by the decay of the Bragg
scattering. For an exponential decay in time, one can
relate the time constant r for the decay to the diffusion D
of the probe molecule:

Dq2 = — - — (7)

where q = 2n/L is the wavevector of the grating and rR is
the thermal relaxation time of the cis to trans isomeriza-
tion. One can create a range of periodicities and deter-
mine D from the slope of T~ l versus q2.

In a forced-Rayleigh-scattering experiment carried
out on porous vycor with azobenzene as the probe
molecule,22 the diffusion coefficient obtained was approxi-
mately 10~8 cm2/sec. This means the diffusion was about
50 times slower than the diffusion of azobenzene in bulk
solution. The presence of boundaries leads to the slowing
down of diffusion processes in embedded liquids, as one
expects from the tortuous paths within such systems and
from higher effective viscosities. Again, two extreme
models can be presented:
[> If the pore network (but not the pore surface) is fractal,
then it is characterized by a fractal dimension ds on length
scales lx < I < Z2, where lx and Z2 are the lower and upper
cutoffs of the fractal range. Because of the nature of
fractal structures, the notion of tortuosity is inherent in
the model. It is well established that diffusion on fractals
is governed by both ds and the spectral dimension d, a
measure of the connectivity of the pore network. Beyond
Z2 the pores can be described as a disordered three-
dimensional network. A simple calculation of forced
Rayleigh scattering in the framework of this model yields,
for periodicities much greater than Z2:

( 7 \2idjd)/ J \2

where r0 is the elementary step time of the molecular
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Excited donor molecule (red), which is
adsorbed onto the pore surface, is quenched
by a gas-phase, Knudsen-diffusing acceptor
molecule (green) in a porous glass. Figure 8

motion. From equation 7 we obtain (assuming large rR)
\2[<d s /5>- 1]

(9)

where l^ ~DnT0~Rp
2. Do is the diffusion coefficient of

the molecule in the confined liquid and can be approximat-
ed by the Stokes-Einstein equation. Equations 8 and 9
offer an analysis of forced Rayleigh scattering in fractal
networks. However, Vycor glass turns out not to have a
fractal pore structure, and therefore equation 9 cannot
account for the azobenzene diffusion.
t> The second approach assumes a cylindrical pore of
radius Rp filled with liquid, within which a molecule of
radius rm diffuses. A hydrodynamic calculation leads to
an equation for the molecular diffusion in terms of the
ratio I = rm IRp. This is known as the Renkin equation23:

D = Dn(l - A2)(l - 2.104i + 2.089i3 - 0.948/t5 (10)
Here again Do is the molecular diffusion according to the
Stokes-Einstein equation. The Renkin equation has been
shown to be approximated by a simple form, D/
Do = exp( — 4.6A). For azobenzene in Vycor, rm /Rp =0.2
and the diffusion coefficient calculated according to
equation 10 is higher than the measured value, even when
corrections for tortuosity are considered. Thus, the
Renkin equation results in incomplete rescaling of the

diffusion of azobenzene as Rp is varied, perhaps because it
does not account for the connectivity of the pore network.
The fractal approach (equation 9) does try to account for
pore connectivity, but fails because Vycor is neither a
mass fractal nor a surface fractal. Hence the diffusion of
azobenzene in Vycor remains an unsolved problem.

References
1. J. W. Cahn, J. Chem. Phys. 42, 93 (1964). B. C. Bunker, D. R.

Tallant, T. J. Headly, G. L. Turner, R. J. Kirkpatrick, Phys.
Chem. Glasses 29, 106 (1988).

2. M. W. Shafer, D. D. Awschalom, J. Warnock, G. Ruben, J.
Appl. Phys. 61, 5438 (1987).

3. S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Po-
rosity, Academic P., New York (1982). R. Sh. Mikhail, E.
Robens, Microstructure and Thermal Analysis of Solid Sur-
faces, Wiley, New York (1983).

4. P. Levitz, G. Ehret, S. K. Sinha, J. M. Drake, to be published.
5. H. Braumberger, P. Debye, J. Phys. Chem. 61, 1623(1957). P.

Debye, H. R. Anderson Jr, H. Brumberger, J. Appl. Phys. 28,
679 (1957). A. Guinier, G. Fournet, Small Angle Scattering of
X-rays, Wiley, New York (1955).

6. S. K. Sinha, Physica D (Utrecht) 38, 310 (1989).
7. J. M. Drake, P. Levitz, S. K. Sinha, in Better Ceramics

Through Chemistry, C. J. Brinker, D. E. Clark, D. R. Ulrich,
eds., Materials Research Society, Pittsburgh (1986), p. 305.

8. P. W. Schmidt, A. Hohr, H.-B. Neumann, H. Kaiser, D. Avnir,
J. R. Lin, J. Chem. Phys. 90, 5016 (1989).

9. J. Warnock, D. D. Awschalom, M. W. Shafer, Phys. Rev. 57,
1753 (1986).

10. J. Klafter, J. M. Drake, eds.. Molecular Dynamics in Restrict-
ed Geometries, Wiley, New York (1989).

11. J. Warnock, D. D. Awschalom, M. W. Shafer, Phys. Rev. B
34, 475 (1986).

12. P. Debye, L. Cleland, J. Appl. Phys. 30, 843 (1985).
13. J. Klafter, A. Blumen, J. Chem. Phys. 80, 879 (1984).
14. P. Levitz, J. M. Drake, J. Klafter, J. Chem. Phys. 89, 5224

(1988).
15. E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems,

Cambridge U. P., New York (1984).
16. J. M. Drake, P. Levitz, J. Klafter, N. J. Turro, K. S. Nitsche,

K. F. Cassidy, Phys. Rev. Lett. 61, 865 (1988).
17. R. Kopelman, Science 241, 1620 (1988).
18. P.-G. de Gennes, C. R. Acad. Sci. Ser. B 295, 1061 (1982).
19. F. Rondelez, H. Hervet, W. Urbach, Chem. Phys. Lett. 53,138

(1983).
20. J. Karger, J. Lenzner, H. Pfeifer, H. Schwabe, W. Heyer, F.

Yankowski, F. Wolf, S. F. Zdanov, J. Am. Ceram. Soc. 65, 69
(1983). F. D'Orazio, S. Bhattacharja, W. P. Halperin, R. Ger-
hardt, Phys. Rev. Lett. 63, 43 (1989).

21. M. T. Bishop, K. H. Langley, F. E. Karasz, Phys. Rev. Lett
56, 197 (1986).

22. W. D. Dozier, J. M. Drake, J. Klafter, Phys. Rev. Lett. 56 197
(1986).

23. R. E. Baltus, J. L. Anderson, Chem. Eng. Sci. 38,1959 (1983).

PHYSICS TODAY MAY 1990 5 5


