
SEARCH & DISCOVERY

MODELS OF STRING THEORY AND 2-D
QUANTUM GRAVITY ARE SOLVED EXACTLY

In how many ways may a quadrila-
teral be dissected into a given number
of smaller quadrilaterals? Or a hexa-
gon into triangles? Or, for that mat-
ter, any polygon into given numbers
of other polygons? Such questions
about enumeration of dissections of a
planar surface attracted the attention
of mathematicians—most notably, of
Leonhard Euler—in the middle of the
18th century. Mathematicians solved
many cases of such problems using
methods of graph theory in the 1960s.
In 1978, however, physicists, in their
attempts to enumerate Feynman dia-
grams in certain theories, indepen-
dently developed a rather elegant and
general method that can be used to
enumerate dissections of any surface.
Physical insights into the divergences
in the solutions obtained by those
general methods have now led to
exact solutions—the first nontrivial
exact solutions to date—of simple
models of quantum gravity in two
dimensions and of simple string theo-
ries. String theorists hope that the
solutions will provide much-needed
insights into the structure of those
theories, just as solving the Schro-
dinger equation for simple, one-di-
mensional potentials yields insights
into quantum dynamics: For exam-
ple, the solutions for one-dimensional
potentials show features, such as the
existence of the zero-point energy and
the possibility of tunneling, that dis-
tinguish quantum mechanical behav-
ior from the classical one. In the
absence of any exact solutions, at-
tempts to understand the content of
string theories had been limited to
perturbation expansions in the string
coupling constant. The new, exact
solutions show that string theories
have features, not fully understood
yet, that no perturbation expansion in
the coupling constant could unravel.

The perturbation expansion in the
string coupling constant is similar in

spirit to the perturbation theory used
in elementary quantum mechanics.
When such expansions are used in
field theory, the number of terms at a
given order in the expansion param-
eter often increases much faster than
any power of the order, so the expan-
sion diverges. The divergence of the
expansion, especially when the signs
of successive terms in it do not alter-
nate, is usually evidence for nonper-
turbative effects, such as tunneling.
The divergence may also indicate a
poor choice of the vacuum state (in
quantum mechanics parlance, of the
unperturbed wavefunction). In string
theories, the perturbation expansion
has been known to be divergent. And
the vacuum state, which in string
theories determines such important
issues as the particle spectrum and
the gauge groups, often has too much
symmetry. But perturbation expan-

Dissecting a
quadrilateral into two
quadrilaterals in two
ways (top) gives two
Feynman diagrams
(bottom) as duals of
those dissections. In
general, duals to
dissections of an
/7-gon are Feynman
diagrams with n
external lines, and
duals to dissections
of an /7-gon into
m-gons are Feynman
diagrams for a theory
with mth-order
coupling. The
correspondence,
shown here for a
plane, holds for
surfaces of all genera.

sions yield no mechanism for break-
ing some of the unwanted symme-
tries. Supersymmetry—the symme-
try between fermionic and bosonic
degrees of freedom in a theory, which
superstring theories have—is an ex-
ample of a symmetry that must be
broken. For these reasons, David
Gross (Princeton) explained to us, the
lack of nonperturbative methods in
string theory has been a stumbling
block in the further development of
the theory.

The universe we live in may be one
of many possible universes. Quantum
gravity theories may permit "commu-
nication" between different uni-
verses. The physics of wormholes,
which are space-time configurations
connecting different possible uni-
verses, may be grasped, Stephen
Shenker (Rutgers University) told us,
only in a nonperturbative treatment
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of quantum gravity. Wormholes and
other nonperturbative aspects of
quantum gravity may also be neces-
sary for understanding why the cos-
mological constant vanishes (see
PHYSICS TODAY, March 1989, page 21).

Genealogy
The exact solutions of models of string
theory and quantum gravity now
being discussed are a culmination
of—or, regarded more hopefully, just
the most recent link in—a long pro-
gression of ideas. The progression
dates from the mid-1970s, when theo-
rists were eagerly looking for simple
models and approximations that
might reveal the physics of quantum
chromodynamics, which had just
emerged as the successful theory of
strong interactions. In that climate
Gerard 't Hooft (University of
Utrecht) proposed, in 1974, that when
the symmetry group of QCD (which is
SU(3) because quarks come in three
colors) is generalized to SU(A0, 1/N
emerges as an extremely useful ex-
pansion parameter for studying the
theory, 't Hooft demonstrated the
usefulness of this expansion param-
eter by arguing that many of the
salient features of strong interactions
occur already in the leading order in
the 1/N expansion. The leading or-
der, obtained in the limit N— oo, is
called the planar approximation (for
reasons to be discussed later). (For a
discussion of 1/N expansions and
their relevance to hadron dynamics,
see the article by Edward Witten, in
PHYSICS TODAY, July 1980, page 38.)

't Hooft's hopeful suggestion and
the desire to master the planar ap-
proximation that it engendered
among theorists led to the study of
simple models in which, as in the
SU(iV) generalization of QCD, there is
an NxN matrix at every space-time
point. In 1978, in what has turned out
to be a remarkable development in
mathematical physics, Edouard Bre-
zin (Ecole Normale Superieure, Par-
is), Claude Itzykson (CEN Saclay),
Giorgio Parisi (University of Rome)
and Jean Bernard Zuber (CEN Sa-
clay) solved a class of matrix models
in the planar limit for the simple case
in which the space-time consists of a
single point. That solution provides,
as mentioned above, a convenient way
to enumerate the Feynman diagrams
of the theory as well as possible ways
to dissect polygons. But the solution
is regarded as a remarkable develop-
ment because of the new ideas the
four authors, as well as Daniel Bessis,
Sudhir Chadha, Gilbert Mahoux and,
especially, Madan Lai Mehta (all at
CEN Saclay), introduced in subse-
quent papers rederiving and general-

izing the solution.
In 1985, Jan Ambjorn, Bersign Dur-

huus and Jurg Frohlich (ETH Zurich),
Frangois David (CEN Saclay) and
Vladimir Kazakov (Cybernetics Coun-
cil, USSR Academy of Sciences, Mos-
cow, and ENS Paris) proposed that
the sort of matrix model solved in
1978 might be used to study string
theory and two-dimensional quantum
gravity. This correspondence was
confirmed three years later, in 1988,
when the late Vadim Knizhnik, Alex-
ander Polyakov (Princeton) and Alex-
ander Zamolodchikov (Princeton) ob-
tained an exact solution for a special
case of two-dimensional gravity—one
in which the space-time is limited to a
spherical shape. That solution agreed
with the one obtained earlier, in 1985,
using the matrix-model ideas.

The recent, exact solutions of mod-
els of quantum gravity and string
theory emerged from the realization
that matrix models like the one solved
in 1978 in the planar approximation
can be solved exactly in a certain
scaling limit (discussed later) that
corresponds to special values of the
coupling constants of those models.
The first solutions appeared last fall
in three related but independent pa-
pers—by Brezin and Kazakov, by
Shenker and Michael Douglas
(Rutgers) and by Gross and Alexander
Migdal (Princeton).' Those first solu-
tions have been extended to more
general situations by the authors and
by a number of theorists around the
world.

Sums over surfaces
The motion of a particle may be
described by a catalog of its positions
or some generalized coordinates as a
function of time. In classical mechan-
ics the particle, in its motion between
two fixed points, follows the trajec-
tory along which the action is mini-
mum. In quantum mechanics as for-
mulated using Feynman path-inte-
gral methods, by contrast, the
amplitude for the particle's making a
transition between the two points is
given by a sum over all possible
trajectories between the two points,
each trajectory being weighted by an
exponential of i ( = V — 1) times the
action along that trajectory. Similar-
ly, the quantum mechanical descrip-
tion of the dynamics of a string
involves a sum over all possible sur-
faces connecting the string's initial
and final configurations. The sum
depends on the model chosen for the
string dynamics because the contribu-
tion of each surface depends on the
value of the action on that surface.
The sum also depends on the dimen-
sionality of space-time because the

value of the action depends on that
dimensionality and, more important-
ly, because the shapes a two-dimen-
sional surface may take depend on the
dimensionality of the space—in this
case, the space-time dimensionali-
ty—in which the surface is embedded.

The quantum mechanical descrip-
tion of gravity in two-dimensional
space-time also involves a sum over
two-dimensional surfaces: Like the
principle of least action of classical
particle dynamics, the Einstein equa-
tions of general relativity, whose solu-
tion for a given set of boundary
conditions specifies the shape or to-
pology of space-time, provide only a
classical description of gravity. In
general, quantum theories of gravity
involve sums over objects of dimen-
sionality equal to that of space-time.
Thus the fundamental mathematical
problem underlying studies both of
quantum gravity in two space-time
dimensions and of string theories is
the enumeration of surfaces of differ-
ent shapes and sizes and the summa-
tion of their contributions to some
suitably defined Feynman path inte-
gral.

A curve with free ends that does not
intersect itself can be smoothly trans-
formed into a straight line and is said
to be topologically equivalent to it. In
general, a one-dimensional curve may
be characterized by the number of
times it intersects itself. Such a
characterization of curves, and there-
fore of particle trajectories, is the
reason that the perturbative, Feyn-
man-diagram expansions of theories
of point particles are also called loop
expansions. Similarly, every surface
with no free boundaries is topological-
ly equivalent to a sphere that has a
few handles attached to it. Such a
surface is said to have genus p if it
may be smoothly deformed into—that
is, is topologically equivalent to—a
sphere having 2p holes joined in pairs
by p handles. The perturbative ex-
pansions in the string coupling con-
stant, which hitherto have been used
to study string theories, are arranged
according to the genus of the surface
spanned by the string. Such expan-
sions, however, are badly divergent.

The recent exact solutions simulta-
neously sum the contributions from
surfaces of different genera. In the
method used to achieve this summa-
tion the continuous surface is first
approximated by polygonal tiles. The
continuum limit is recovered when
the length of the polygons' edges is
taken to be vanishingly small. In this
discrete approximation to a surface of
given genus, different ways of dissect-
ing the surface into polygonal tiles
correspond to different possible con-
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figurations of the continuous surface.

To carry out the sum over surfaces
needed to solve string theory and
quantum gravity models, therefore,
one needs a way to keep track of the
possible ways of dissecting a surface.
This is where the simple matrix
models solved using the ideas dis-
cussed in 1978 come in. The dual to
each Feynman diagram (or graph) of
those models shows a way of dissect-
ing a surface. (The dual to a graph or
diagram is obtained by replacing each
face of the graph by a point and
joining those points by lines that cut
the edges of the original graph just
once.) If the model has a pth-order
interaction—that is, if the interaction
part of the model Lagrangian is a pth-
order monomial in the matrix field—
the duals to the Feynman diagrams
are ways of dissecting the surface into
jo-sided polygons. Similarly, when
interactions of pth and qth order are
present, the dual graphs are dissec-
tions using simultaneously both pth-
and gth-order polygons. (See the fig-
ure on page 17.) Furthermore, as
'tHooft had discussed already in
1974, the 1/N expansion of the models
is an expansion in the genus of the
surface: At a given order in 1/iVone
gets contributions from all Feynman
diagrams that may be drawn without
lifting the pen on a surface of genus
equal to the order in 1/N. (This
explains why 't Hooft called the lead-
ing order of the 1/N expansion the
planar approximation: Only dia-
grams that may be drawn on a sphere
contribute in that order, and a sphere
is topologically equivalent to a plane.)
Therefore the term of order (1/N1Y in
the 1/N expansion of a matrix model
having pth-order interaction gener-
ates all possible ways of dissecting a
genus-r surface into />th-order poly-
gons (see the figure above).

The three papers last fall that
triggered the recent wave of exact
solutions of models of string theory
and quantum gravity showed, in es-
sence, that the matrix models solved
in the planar approximation in 1978
for all values of the coupling con-
stants can be solved exactly for spe-
cial values of their coupling con-
stants. Those coupling constant val-
ues are the ones at which, in the
language of dissections, the number of
polygons of the given kind used in the
dissection becomes very large, so that
for a fixed area the surface ceases to
be a fishnet and becomes continuous.
In the matrix models, this is accom-
plished by taking two limits: The
couplings of the models are taken to
be infinitesimally close to the values
at which each order in the 1/N
expansion diverges, and simulta-

First-order Feynman diagrams for the ground-state energy in a theory
with quartic interaction. The diagram at top left, which is of leading order
in 1IN, may be drawn on a sphere or plane (lower left) without lifting the
pen. But the same exercise for the diagram at right, which is of next
higher order in 11N, may be done only on a torus. The double-line
representation used here was introduced by 't Hooft to obtain the N
dependence of the diagrams in matrix models. Each closed loop
traversed as indicated contributes a factor N to the diagrams. (Adapted
from D. Bessis, C. Itzykson, J.-B. Zuber, Adv. Appl. Math. 1, 109, 1980.)

neously the limit N— oo is taken. The
necessity for such a double limit
arises because the string coupling
constant has a nontrivial dependence
on the length scale over which it is
probed.

The genealogy of the ideas that
have led to the exact string theory
and quantum gravity solutions brings
home the limitations of those solu-
tions. The planar limit of the matrix
models was solved only for a single
space-time point, and the recent gen-
eralization of that solution also holds
for a single space-time point. In the
language of string theory, this means
that the space-time in which the
surface spanned by the string is em-
bedded consists of just one point. The
first solutions, however, have been
extended in many ways. Douglas has
obtained solutions for a space-time
consisting of infinitely many points,
and Brezin, Kazakov and Alexei Za-
molodchikov (ENS Paris); Paul Gin-
sparg (Harvard) and J. Zinn-Justin
(CEN Saclay); Gross and Nikola Milj-
kovic (Princeton); and Parisi have all
solved models of strings embedded in
one-dimensional space-time.

Excitement, nevertheless
Like many a development in math-
ematical physics, the new solutions
also are obtained by solving differen-
tial equations. The differential equa-
tions arise from taking the continuum
limit of the relevant sum over the
discrete approximation to the sur-
faces. In equations for string models,

the variable is the string coupling
constant, so the equations describe
how some string correlation function
or vacuum energy or the density of
excitations depends on that coupling
constant. Fortunately, the differen-
tial equations encountered in the
solutions all belong to a hierarchy of
integrable equations generally re-
ferred to as the KdV hierarchy (after
Korteweg and de Vries).

Solutions of differential equations
usually depend on values of some
parameters, which may represent ini-
tial or boundary conditions, for exam-
ple. The new solutions also depend on
parameters. Fixing the value of those
parameters presented somewhat of a
riddle in the beginning, but Brezin,
Parisi and Enzo Marinari (University
of Rome) have made some progress in
this regard.

Witten has argued that the models
solved exactly may be related to
topological field theories. Another
important question, Gross reminded
us, is the relevance of the new solu-
tions to the so-called critical string
theories, such as the ten-dimensional
superstring theories that in 1984
emerged as the strongest candidates
for unifying all four fundamental
interactions. —ANIL KHURANA

Reference
1. E. Brezin, V. Kazakov, Phys. Lett. B

236, 144 (1990). M. Douglas, S. H.
Shenker, Nucl. Phys. B. (in press). D. J.
Gross, A. A. Migdal, Phys. Rev. Lett. 64,
127 (1990). •

PHYSICS TODAY APRIL 1990 1 9


