ing Super Collider Laboratory in Dallas, Texas. Dugan was previously head of Fermilab's antiproton source department.

Simon Foner, chief scientist at the MIT Francis Bitter National Magnet Laboratory, is now also associate director of the laboratory.

OBITUARIES George Pimentel

Until his death on 18 June 1989, George Pimentel devoted his unbounded energy and passion to science, to his students and colleagues, to his family, and to an occasional ballgame.

George was born 2 May 1922 in California's Central Valley. He grew up in a poor section of Los Angeles, attended public schools and earned a bachelor's degree in chemistry from the University of California, Los Angeles, in 1943. Following a short stint at Berkeley working on the Manhattan Project, George trained for submarine duty in the Navy. At the close of the war he participated in the formation of the Office of Naval Research and in early consideration of nuclear-powered ships.

In 1946 George returned to Berkeley to do graduate work with Kenneth Pitzer on infrared spectroscopy. Three years later he had earned his PhD in chemistry and joined the faculty. During his career George developed methods of vibrational spectroscopy to study molecular bonding and chemical reactivity, to produce the first chemical lasers and to explore the planet Mars.

George attacked the important problems. During the 1950s he developed the matrix-isolation technique to trap free radicals, extremely reactive molecules that play a central role in chemical reactions. A solid matrix of inert gas molecules, cooled to the temperature of liquid hydrogen, prevented a free radical embedded inside it from reacting, thus allowing leisurely spectroscopic study of the radical. This method was used first to investigate the HCO radical and to record spectra of hydrogen-bonded species, and later to study rare gas compounds and many other interesting species. It is now employed routinely in most chemical laboratories. With Aubrey McClellan, George wrote The Hydrogen Bond (1960), the book on hydrogen bonding that guided the field for many years.

In the mid-sixties George's studies of fast reactions unlocked the secret to converting chemical energy directly into laser light. He and Jerry Kasper first discovered the iodineatom photodissociation laser— $\mathrm{CF_3I} + h\nu - \mathrm{CF_3} + \mathrm{I}(^2P_{1/2})$ —which lased on the $^2P_{1/2} - ^2P_{3/2}$ transition, and then the $\mathrm{H_2} + \mathrm{Cl_2}$ laser. After that, he and Karl Kompa developed the very practical HF chemical laser. This laser has since taught us much about chemical reactions and about the transfer of energy among molecules. It has also been developed into large and powerful laser systems.

George wanted to know whether there was life on Mars, and so he persuaded NASA to put one of his rapid-scan infrared spectrometers on a Mariner spacecraft to determine the chemical constituents of the Martian surface. His instrument was novel and clever, built from scratch on the Berkeley campus to NASA space flight standards. No evidence for biological material was observed, but much was learned about the planet's surface and atmosphere. George was chosen as a member of the first group of scientist-astronauts, but he withdrew when he learned that he would probably never get into space.

George was a national leader in science and science policy. He served as deputy director of the National Science Foundation from 1977 to 1980 and as president of the American Chemical Society in 1986. He organized and edited the National Academy of Sciences report Opportunities in Chemistry—often called the "Pimentel Report"—which was published in 1985 and later revised and released for use in high schools under the title Opportunities in Chemistry: Today and Tomorrow. In George's final lecture, the Priestley Medal Address given last April, he urged members of the scientific community to mount "a massive and ongoing campaign of public education," so that our society can sensibly weigh the risks and benefits of science and technology.

George loved to teach. He brought the significance of chemistry and the excitement of research to Berkelev freshmen, to his research students and collaborators, to national leaders and, through the CHEM study program, to secondary school teachers and students. He helped each of his research students attain a level of achievement well beyond reasonable expectations. Whether he was in the halls of Congress, in the classroom or eating a peanut butter sandwich, George's clear logic, his openness and candor and his concern for others always won his audience.

George Pimentel did everything with tremendous vigor, intensity, commitment and, above all, desire to LAWRENCE BERKELEY LABORATORY

George Pimentel

succeed. Squash partners and opposing softball teams quickly found this out. George's idea of relaxation was winning a ballgame, mixing concrete or having a hundred friends over for a party.

George Pimentel chose his own epitaph:

"He went to the ballpark every day/And he let them know he came to play."

C. Bradley Moore University of California, Berkeley

Michael J. Moravcsik

Michael J. Moravcsik died quite unexpectedly on 25 April 1989 in Turin, Italy. He was spending a term at the University of Turin, on leave from the University of Oregon.

Mike was a very active researcher in theoretical high- and intermediate-energy physics as well as in science policy, international scientific development and the "science of science." He was a dedicated teacher and a prolific writer on a broad range of topics.

Born in Budapest, Hungary, in 1928, Mike emigrated to the United States in 1948. He continued his education in physics and mathematics, receiving his AB from Harvard in 1951 and his PhD in theoretical physics from Cornell in 1956 under the supervision of Hans Bethe.

In 1958, after two years as a research associate at Brookhaven National Laboratory, he joined the theoretical physics division of the Lawrence Radiation Laboratory of the University of California, where he became head of the elementary-particle and nuclear physics group. In