ANTICIPATIONS
OF THE
GEOMETRIC PHASE

The nofion that a quantum system’s
wavefunction may not return to its original
phase after its parameters cycle slowly around
a circuit had many precursors—in polarized
light, radio waves, molecules, matrices

and curved surfaces.

Michael Berry

In science we like to emphasize the novelty and originality
of our ideas. This is harmless enough, provided it does not
blind us to the fact that concepts rarely arise out of
nowhere. There is always a historical context, in which
isolated precursors of the idea have already appeared.
What we call “discovery” sometimes looks, in retrospect,
more like emergence into the air from subterranean
intellectual currents.

The geometric phase, whose discovery I reported early
in 1983, is no exception to this rule.! The paper was about
quantum systems forced round a cycle by a slow circuit of
parameters that govern them; it gave rise to a number of
applications and several generalizations, documented in a
series of reviews and books.>® My purpose here is to look
back at some early studies that with hindsight we see as
particular examples of the geometric phase or the central
idea underlying it.

Parallel transport

First I need to explain this central idea. It is the geometric
phenomenon of anholonomy resulting from parallel trans-
port. This is a type of nonintegrability, arising when a
quantity is slaved to parameters so as to have no local rate
of change when those parameters are altered, but never-
theless fails to come back to its original value when the pa-
rameters return to their original values after being taken
round a circuit.

Michael Berry is a professor of physics at the University of
Bristol, in Bristol, England.
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A physical example of this “global change without
local change” is the Foucault pendulum (figure 1), whose
direction of swing, described by a unit vector e, is slaved to
the local vertical, described by the radial unit vector r.
The slaving law is parallel transport, which means that
the direction of swing does not rotate about the vertical—
that is, e has no component of angular velocity along r.
However, in spite of never being rotated, e does not return
to its original value when, after a day, r has completed a
circuit C (here a circle of latitude). The anholonomy is the
angle between the initial and final swing directions e, and
is equal to the solid angle subtended at the Earth’s center
by C.

A note about terminology: Although the anholonomy
of parallel transport of a vector on a curved surface was
known to Gauss nearly two centuries ago, the word seems
to have entered the literature through the study of
mechanics in the presence of constraints. A constraint is
holonomic if it can be integrated and thereby can reduce
the number of degrees of freedom, as with a rolling
cylinder. Otherwise, it is nonholonomic (or nonholono-
mous, or anholonomic), as with a rolling disk, which can
sway from side to side. According to the Oxford English
Dictionary the word was first used by Hertz in 1894.
Nowadays the concept of anholonomy is familiar to
geometers, but they often call it “holonomy,” a reversal of
usage I consider a barbarism.

The geometric phase can be regarded as anholonomic
for the parallel transport of quantum states. Mathemat-
ically, quantum states are represented by unit vectors in
Hilbert space. Although these unit vectors are complex,
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parallel transport can still be defined. A natural way to
implement it is by a slow cycle C of parameters in the
Hamiltonian governing the evolution of the system
according to Schrodinger’s equation, The quantum adia-
batic theorem guarantees that if the system starts in the
instantaneous eigenstate labeled n, it will still be in the
state n at the end of the cycle C. However, the phase of the
state vector need not, and usually does not, return. Part of
this change—the geometric phase—is the manifestation of
anholonomy.

To give an account of the earlier work, I have first to
describe the geometric phase for spinning particles. This
concerns a spinor state corresponding to a definite value s
(integer or half-integer) for the component of spin along
some direction r. An example is a spin eigenstate
(s= + %) of aneutronina magnetic field with direction r.
If the direction is cycled, that is, taken round a closed
curve Con the unit r sphere, the state acquires a geometric
phase equal to — s times the solid angle subtended by C at
the center of the sphere. Asis well known, the spin-Y, case
is isomorphic to the general quantum two-state system,
where the Hamiltonian is a 2x2 complex Hermitian
matrix.

Coiled light

Raymond Y. Chiao, Akira Tomita and Yong-Shi Wu were
quick to apply the spin phase to optics, by regarding a light
beam as a stream of photons with quantization direction r
along the direction of propagation.? The two states,
s= +1, correspond to left- and right-handed circularly
polarized light. To cycle r they therefore had to cycle the

Foucault pendulum at Griffith Observatory in
Los Angeles, and diagram showing its
anholonomy. The direction of swing does not
return to its initial value when the pendulum
completes its one-day trip around a circle of
latitude. (In the diagram, the direction of
swing e is parallel-transported around the
diurnal circuit C by the local vertical r.) At
the latitude of Los Angeles, the direction of
swing comes back to its original value after 42
hours, and so the pit is marked off in 42
segments. (Courtesy of Edwin Krupp, Griffith
Observatory.) Figure 1

e North Pole

direction of propagation, which they accomplished by
sending the light along optical fibers that were coiled into
paths such as helices, and for which the initial and final
tangent directions r were parallel. An obvious way to
observe the geometric phase would be to split a beam of
(say) left circularly polarized light into two coherent
beams, send them along two oppositely coiled fibers,
recombine them and detect the resulting opposite geomet-
ric phases by interference. Instead, Chiao, Tomita and Wu
performed the simpler experiment of sending a single
beam of linearly polarized light along a single fiber. The
initial linear polarization is a particular superposition of
the s= +1 and s= —1 states, which acquire opposite
phases after passage through the fiber and so emerge in a
different superposition, corresponding again to linear
polarization, but now in a different direction. (The
“interference” and “superposition” techniques correspond
to two different general methods for detecting the phase,
employing, respectively, one state and two different
Hamiltonians or two states and one Hamiltonian.)

One manifestation of the geometric phase for light is
therefore a rotation of the direction of polarized light
(figure 2) after it has traveled along a coiled optical fiber.
The angle of rotation is equal to the solid angle through
which the fiber tangent r has turned, implying that the po-
larization has been parallel-transported. Chiao and his
coworkers themselves pointed out that this appears to be a
phenomenon of classical optics, which although originat-
ing in the quantum mechanics of spinning photons
survives the classical limit # — 0 up to the level described
by Maxwell’s equations. They did not, however, show how
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Fiber tangent r

the rotation of polarization is contained in Maxwell’s
equations; nor had J. Neil Ross of the Central Electricity
Generating Board Laboratories, in Leatherhead, England,
who had demonstrated the rotation earlier, in a 1984
experiment. (Ross implicitly assumed the parallel trans-
port law.)

However, in a remarkable paper, published in 1941
(the year I was born) and the first of our “anticipations,”
Vassily V. Vladimirskii had, in effect, done just that, in an
extension of an earlier paper published in 1938 by Sergei
M. Rytov.® Rytov was concerned with the short-wave
limiting asymptotics of electromagnetic waves in inhomo-
geneous media. He was dissatisfied with the conventional
derivations of the generalized Snell refraction law of
geometrical optics (ray curvature is equal to the compo-
nent of grad[log(refractive index)] perpendicular to the
ray), because this ignores the vector nature of light waves:
There had to be a transport law for the directions e and h
of the electric and magnetic fields. He showed that the
law is parallel transport—of the orthogonal triad consist-
ing of e, h and the ray direction r.

Vladimirskii’s contribution—surprisingly modern in
tone—was to show that Rytov’s law is nonintegrable and
implies the solid-angle law for the rotation of polarization.
Vladimirskii pointed out one consequence of his analysis:
Observation of polarization rotation of an outgoing ray
relative to a parallel incident ray does not imply anisotro-
py (or chirality) of the intervening medium, because it
could result from ray curvature induced by inhomogeneity
of the medium. He did not state that parallel transport
of the fields implies phase anholonomy for circularly
polarized rays, but Rytov came close, remarking that it
implies different phase velocities for the two circular
polarizations.

In essence, the theory that Vladimirskii and Rytov
developed contains the explanation of the experiments of
Chiao’s group. Strictly speaking, however, Vladimirskii
and Rytov’s analysis cannot be invoked, because those
experiments employed monomode fibers, which are too
thin for geometrical optics to be validly applied. It is
necessary to use the full Maxwell equations, either in a
modal analysis’ or, when recast as a Schrodinger-type
spinor equation, to enable immediate application of the
spin-1 geometric phase formula.’

It is worth pausing to note the political circumstances
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Rotation of linear polarization by parallel
transport along a coiled optical fiber. The
vectors e and h represent the electric and
magnetic fields, respectively. Figure 2

in which Vladimirskii worked. In 1941, a few months
after he submitted his paper, the Soviet Union was
plunged into the turmoil of World War II by Hitler’s
sudden invasion. ’

Polarization cycles

In a different application to optics, I considered not light
with a fixed state of polarization (circular, for example)
and changing direction, but the opposite, namely light
traveling in a fixed direction with a slowly changing state
of polarization.® A way to accomplish this, and thereby
generate a geometric phase, would be through a transpar-
ent medium that was both anisotropic and chiral (such as a
liquid in strong electric and magnetic fields) and so
possessed both birefringence and gyrotropy. These prop-
erties would be reflected in the complex Hermitian
dielectric tensor of the medium, which could be varied
along the beam and then brought back to its original form.
(Actually what is relevant is only the 2X2 matrix
representing the components of the inverse of this tensor
perpendicular to the beam.) .

This too had been anticipated, in a strikingly original
paper published 30 years before by S. Pancharatnam of
Bangalore.® He was investigating the interference pat-
terns produced by plates of anisotropic crystal, and found
existing theory inadequate to explain what he saw. In
particular, he needed to define how two beams in different
polarization states (linear and elliptic, for example) could
have the same phase. He did this by considering the
intensity of the wave obtained by coherent linear superpo-
sition of the two beams. As the phases of the individual
beams are varied, this intensity waxes and wanes. When
it is maximum, the two beams are defined as being “in
phase.” The two beams could represent successive states
in the polarization history of a single beam, so this
procedure also enabled him to define how a beam can
preserve its phase while its polarization state is altered
(not necessarily slowly)."

Pancharatnam then made the important observation
that this law of phase preservation is nontransitive. Thus
a beam may start out with a polarization 1, which is
altered first to polarization 2, in phase with 1, then to 3, in
phase with 2, and then back to 1, in phase with 3; and yet
the final polarization-1 beam need not have the same
phase as the initial polarization-1 beam, in spite of the fact
that all three local phase changes were zero. To calculate
the phase change, he represented states of polarization as
points on the “Poincaré sphere” (see figure 3). In this
picture, the poles represent left- and right-handed circular
polarization; points on the equator represent linear
polarizations (with the direction rotating by 180° in a 360°



Poincaré sphere of polarization states r. The
phase change associated with a circuit C of
polarization states is half the solid angle
subtended by C at the center of the

sphere. Figure 3

circuit, because two polarization orientations differing by
180° are the same); and all other points represent elliptic
polarizations. The path 1231 is a circuit C on the sphere,
and Pancharatnam discovered that the associated phase
change is half the solid angle subtended by C at the center
of the sphere.

Clearly, Pancharatnam discovered what we would
now call the geometric phase for polarization circuits of
light. To make the connection with the way we see things
nowadays, it is first necessary to know that the polariza-
tion associated with the point on the Poincaré sphere
indicated by the unit vector r (that is, the corresponding
transverse electric field represented by the complex unit
vector e) is represented by the complex eigenvector of S-r,
where S is the vector of three 2X2 Pauli spin-%
matrices.'® (The components of r are the Stokes param-
eters of the polarization.) This relation between polariza-
tions and quantum states of spin-%, particles—that is,
with two-state systems—is unsurprising, because any
polarization of light traveling in a fixed direction is a
superposition of two basis polarizations—for example, left
and right circular, or horizontal and vertical linear. The
crucial step is now to demonstrate that parallel transport
of these eigenvectors is equivalent to Pancharatnam’s
phase preservation rule for the associated polarizations.
The “half the solid angle” rule follows at once from the
spin-¥, analogy.

Pancharatnam was a nephew of C. V. Raman, and so
belonged to the distinguished dynasty that includes the
astrophysicist S. Chandrasekhar, the liquid crystal physi-
cist S. Chandrasekhar, the crystallographer S. Ramase-
shan and the radioastronomer V. Radhakrishnan. When
Pancharatnam wrote about polarized light, he was only 22
years old. In spite of this brilliant beginning, his story
ended sadly, with his untimely death at the age of 35.

While writing this article I discovered some remark-
able papers written in 1975 by Martin S. Smith and
Kenneth G. Budden,!' who although unaware of the

earlier works by Vladimirskii and Pancharatnam never-

theless provide a more general viewpoint into which these
fit as special cases. Budden and Smith were studying the
propagation of short radio waves in the ionosphere, where
the “ray” or “WKB” approximation is appropriate. Such
wave fields are dominated by a complex exponential factor
whose phase is the familiar optical path length—the
integral of the local wavenumber. They called this path
integral ‘“phase memory” because it depends on the
properties of the medium—the atmosphere—along the
entire propagation path. Thus it is nonintegrable, in
contrast to the wave amplitude, which in the simplest
theory is a “local” factor depending only on the properties

N (left circular)

Solid angle

Equator (linear)

S (right circular)

(such as refractive index) at the ends of the ray.

Budden and Smith’s contribution was to show that in
all but a few cases the simplest theory is wrong, because
there is an additional factor, which they called “additional
memory,” whose exponent also depends nonintegrably on
the propagation path. The additional memory may be real
or complex and so can contribute nonlocally to the phase
or the amplitude. They gave a theory covering a very
general class of waves, described by vectors whose
evolution along the ray is driven by a matrix embodying
the properties of the medium. Although they did not
consider cycles of the medium parameters, their general
formula expressing the additional memory as an integral
along the ray can be shown to be exactly the one we are
now familiar with in quantum mechanics, which can be
viewed as a special case where the driving matrix is
Hermitian and the ray parameter is time.'?

C, Cy

-

wf

Line of degeneracies of elements of a real
symmetric 2 X 2 matrix. The circuit C;
encloses the line L of degeneracies and so
generates a geometric sign change; C, does
not enclose £, and so does not generate such
a change. Figure 4
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As well as including technicalities that are still
interesting today,'? Budden and Smith gave many applica-
tions, demonstrating phase memory in seismic waves,
magnetohydrodynamic waves, electroacoustic plasma
waves and atmospheric acoustic gravity waves as well as i-
onospheric radio waves. (Readers are warned, however,
that Budden and Smith’s initial illustrative example,!!
predicting that light traversing a transparent and vari-
ably optically active refracting medium will exhibit
additional memory, is wrong because they employ an
unphysical constitutive relation. When this is corrected,
the additional memory is canceled by a part of the
ordinary memory.'2)

Degeneracy

The existence of geometric phases implies that quantum
eigenstates are not single-valued under continuation of
parameters in the Hamiltonian. Thus expressed, phase
anholonomy appears to be a rather subtle property,

especially when contrasted with the more familiar single-

valued-ness demanded of wavefunctions under continu-
ation of position coordinates, which is necessary to get
quantized energy levels (in the harmonic oscillator, for
example). However, when detached from its original
quantum mechanical context, the geometric phase can be
regarded as an expression of a simple property of matrices
that depend on parameters—that is, of families of
matrices: Their eigenvectors are not single-valued when
parallel-transported via changes of the parameters. After
a parameter circuit C, the eigenvectors do not return to
their original values. In the class of complex Hermitian
matrices important for quantum physics, the failure to
return takes the form of a phase shift.

Special among Hermitian matrices are real symmet-
ric matrices, which in quantum mechanics can represent
Hamiltonians of systems with time-reversal symmetry—
for example, charged particles in electric, but not magnet-
ic, fields. The eigenvectors of these matrices are real, and
so the only phase anholonomy is 7, corresponding to a
change of sign of the eigenvectors. The sign change occurs
only if the circuit C encloses a degeneracy of the
transported state. The simplest case is that of 2x2
matrices

Nuclear coordinate circuit. The circuit Cis
in the space of nuclear coordinates X of
triatomic molecules. The circuit surrounds the
equilateral molecule, for which there is an
energy level degeneracy (at the conical
intersection). Figure 5

38  PHYSICS TODAY  DECEMBER 1990

Here degeneracies in the u,v,w parameter space corre-
spond to the line v = 0, u = w, and so there is a sign change
in the eigenvectors only if C encloses this line (see figure 4).

Such a simple property—even of 2x 2 matrices—was
not well known in 1983. I could find no reference to it in
textbooks of matrix theory (and would welcome informa-
tion about any). Nevertheless, it was known, in particular
to quantum chemists studying the vibrations and rota-
tions of molecules. In the Born-Oppenheimer (adiabatic)
approximation, the coordinates of the nuclei are regarded
as parameters, to which quantum states of the electrons
are slaved. Nuclear configurations with symmetry can
give rise to degeneracy of the electronic energies. In 1958,
H. Christopher Longuet-Higgins, Uno Opik, Maurice H.
L. Pryce and Robert A. Sack noticed that in the solution of
a particular model the electronic wavefunctions changed
sign when the nuclear coordinates made a circuit of the
symmetric (degenerate) configuration (see figure 5).!3
This is the 7 anholonomy of real symmetric matrices,
recognized as a general phenomenon by Gerhard Herzberg
and Longuet-Higgins'* in 1963.

Longuet-Higgins and his coworkers realized that the

Degeneracy
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Drumhead-shape circuit. The circuit Cis in
the space of boundary shapes of triangular
drums, and surrounds a shape for which the
vibration mode is degenerate. (The shapes
look the same because the circuit is small.)
The dark and light areas of the vibrating drums
correspond to the conventional labels + and —.
Note that the vibrations in the triangles at
thé'beginning and end of the circuit (the
triangles on either side of the arrow) differ
only in phase, by 180°. Figure 6

sign change has physical consequences when the nuclear
coordinates are themselves quantized instead of being
regarded as externally specified parameters: The vibra-
tion-rotation energies have half-odd-integer quantum
numbers, rather than the usual integer ones. They
remarked, ‘“This half-oddness is at first sight strange, but
may be understood by noting that [around a circuit] the
electronic factor in the wavefunction will be multiplied by
— 1, so that the angular part of the nuclear factor must do
likewise if the total wavefunction is to be single-valued.”
This is the phenomenon of pseudorotation, which has been
of considerable interest recently.'®

Among mathematicians, the sign change was also
known. In his celebrated text on classical mechanics,
Vladimir I. Arnold describes it for a modal eigenfunction
of a vibrating membrane, or drum, whose boundary is
varied round a circuit C in the space of boundary shapes
surrounding a shape for which the mode is degenerate.!®
For any point on the circuit, the drum eigenfunction is
divided by nodal lines into regions that may be convention-
allylabeled + and — . Around the circuit, the nodal lines
move over the domain and collide, disconnect and recon-
nect so as to change the + regions into — regions
continuously, and vice versa, as figure 6 illustrates for a
set of triangular membranes. Arnold traces the sign
change to a 1976 paper of Karen Uhlenbeck,!” but, as we
have seen, the chemists knew about it in 1958.

Curved surfaces

The 2X 2 sign change is much older. I do not know when’

this was first recognized as a property of matrices, but it is
implied by a result in Gaston Darboux’s monumental 1896
treatise on the differential geometry of curved surfaces.'®
This might be the first example of phase anholonomy,
albeit the rudimentary 7 case. Locally, a smooth surface
can be specified by its deviation z(x,y) from a plane, as
figure 7 indicates. From this function one can form the
2X 2 real symmetric Hessian (curvature) matrix H(x,y) of
second derivatives, and x and y can be regarded as
parameters. The eigenvalues of H are the principal
curvatures of the surface at (x,y)—that is, the greatest and
least curvatures of normal sections through the surface at
(x,). The corresponding eigenvectors are the directions of
these special cuts, and are orthogonal. An unusual
feature of this example is that the eigenvectors can be
considered to lie in the parameter space, as well as being
functions of the parameters. Degeneracies (x,y) corre-
spond to equality of the two curvatures—that is, to
“umbilic points,” where the surface is locally spherical
rather than ellipsoidal or saddle-shaped as it is at typical
points. Umbilics are singularities of the orthogonal net of
curvature lines. The sign change characterizes such a
singularity by a reversal of the curvature directions in a
circuit of it. Alternatively stated, the Poincaré index, or
signed number of rotations associated with an oriented

Space of triangles

circuit, of the field of curvature lines near an umbilic is
+ Y% or —Y,.

A complete characterization of the geometry of an
umbilic is complicated.’® Figure 8 shows the three typical
patterns of curvature lines, one of which (the “star”) has
index — %, and the others of which (the “lemon” and the
“monstar”) have index -+ l/2. The half-integer index is
typical of singularities of line fields (which do not have
arrows), such as those associated with eigenvectors of
families of matrices, in contrast to the integer indices of
vector fields (which do have arrows). The star and lemon

.singularities are familiar, with one of the two orthogonal

sets of lines deleted, as disclinations in the molecular line
fields of liquid crystals,??! and in fingerprints.

In 1976, Anthony J. Stone®? generalized the connec-
tion between degeneracy and the sign change'®'* by
considering complex Hamiltonians. He realized that in
this general case, where the wavefunctions are also
complex, an arbitrary phase, not just 7, could be generated
by taking a system round a circuit C. Without giving a for-

Z(x.y)

Curvatures at a
point on a surface.
Locally, a smooth
surface can be
specified by its
deviation z(x,y)
from a
plane.

o

Curvature lines

Figure 7
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Star

Monstar

The three typical patterns of curvature lines near an umbilic singularity, where the surface is locally spherical.
The star has index — ',. The lemon and monstar have index + ',. Figure 8

mula for the phase, he showed how its existence, for a
succession of circuits that together cover a closed surface,
could provide a topological indicator of the presence of a
degeneracy.

Another anticipation, of which I was regrettably
unaware when writing my original paper,! was the
important work by C. Alden Mead and Donald G. Truhlar
in 1979, containing two developments in the theory of
general complex Hamiltonians.?®> This theory would
apply, for example, to systems with magnetic fields, which
do not have time-reversal symmetry. Like Longuet-
Higgins and his coworkers, Mead and Truhlar were
studying molecules in the Born-Oppenheimer approxima-
tion. The first of the developments was that they not only
realized that the electronic states must acquire a phase
when the nuclear coordinates are cycled, but they also
gave a general formula for the phase in the case of
infinitesimal circuits. Second, they discovered another
role for the expression whose line integral around the
circuit generates the phase: It is the potential of an
effective “gauge force” contributing to the dynamics of the
nuclei. The effect of this force is to modify the nuclear vi-
bration-rotation spectrum, as in the special case of
pseudorotation mentioned earlier.

As elaborated elsewhere,?* in 1983 I was familiar with
the 7 phase shifts of Longuet-Higgins and Darboux
through studies of the quantum mechanics corresponding
to classical chaos, where degeneracies play a useful part.
In retrospect it now appears natural that the generaliza-
tion to the full geometric “phase that launched a thousand
scripts” should have been made in my department at
Bristol. The reason is that in Bristol there had been
several discoveries, over the years, of interesting physics
associated with quantities that fail to return after being
taken round circuits—that is, anholonomy. I have fol-
- lowed that intellectual thread elsewhere,?! and here
simply list some of those contributions: the descriptions by
F. Charles Frank of crystal dislocations (1951) and liquid
crystal disclinations (1958) in terms of anholonomy; the
description of the 7 phase for molecular electrons (1958) by
Pryce, one of Longuet-Higgins’s coauthors and head of the
Bristol physics department; and the discovery by Yakir
Aharonov and David Bohm of the electron phase shift in a
circuit of a magnetic flux line (1959).
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