
ANTICIPATIONS 
OF THE 

GEOMETRIC PHASE 
The notion that a quantum system's 

wavefunction may not return to its original 
phase after its parameters cycle slowly around 

a circuit had many precursors-in polarized 
light, radio waves, molecules, matrices 

and curved surfaces. 

Michael Gerry 

In science we like to emphasize the novelty and originality 
of our ideas. This is harmless enough, provided it does not 
blind us to the fact that concepts rarely arise out of 
nowhere. There is always a historical context, in which 
isolated precursors of the idea have already appeared. 
What we call "discovery" sometimes looks, in retrospect, 
more like emergence into the air from subterranean 
intellectual currents. 

The geometric phase, whose discovery I reported early 
in 1983, is no exception to this rule. 1 The paper was about 
quantum systems forced round a cycle by a slow circuit of 
parameters that govern them; it gave rise to a number of 
applications and several generalizations, documented in a 
series ofreviews and books.2-5 My purpose here is to look 
back at some early studies that with hindsight we see as 
particular examples of the geometric phase or the central 
idea underlying it. 

Porollel transport 
First I need to explain this central idea. It is the geometric 
phenomenon of anholonomy resulting from parallel trans­
port. This is a type of nonintegrability, arising when a 
quantity is slaved to parameters so as to have no local rate 
of change when those parameters are a ltered, but never­
theless fails to come back to its original value when the pa­
rameters return to their original values after being taken 
round a circuit. 

M ichael Berry is a professor of physics at the University of 
Bristol, in Bri stol, England. 
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A physical example of this "global change without 
local change" is the Foucault pendulum (figure 1), whose 
direction of swing, described by a unit vector e, is slaved to 
the local vertical, described by the radial unit vector r . 
The slaving law is parallel transport, which means that 
the direction of swing does not rotate about the vertical­
that is, e has no component of angular velocity along r. 
However, in spite of never being rotated, e does not return 
to its original value when, after a day, r has completed a 
circuit C (here a circle of latitude). The anholonomy is the 
angle between the initial and final swing directions e , and 
is equal to the solid angle subtended at the Earth's center 
byC. 

A note about terminology: Although the anholonomy 
of parallel transport of a vector on a curved surface was 
known to Gauss nearly two centuries ago, the word seems 
to have entered the literature through the study of 
mechanics in the presence of constraints. A constraint is 
holonomic if it can be integrated and thereby can reduce 
the number of degrees of freedom, as with a rolling 
cylinder. Otherwise, it is nonholonomic (or nonholono­
mous, or anholonomic), as with a rolling disk, which can 
sway from side to side. According to the Oxford English 
Dictionary the word was first used by Hertz in 1894. 
Nowadays the concept of anholonomy is familiar to 
geometers, but they often call it "holonomy," a reversal of 
usage I consider a barbarism. 

The geometric phase can be regarded as anholonomic 
for the parallel transport of quantum states. Mathemat­
ically, quantum states are represented by unit vectors in 
Hilbert space. Although these unit vectors are complex, 
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parallel transport can still be defined. A natural way to 
implement it is by a slow cycle C of parameters in the 
Hamiltonian governing the evolution of the system 
according to Schrodinger's equation, The quantum adia­
batic theorem guarantees that if the system starts in the 
instantaneous eigenstate labeled n, it will still be in the 
state n at the end of the cycle C. However, the phase of the 
state vector need not, and usually does not, return. Part of 
this change-the geometric phase-is the manifestation of 
anholonomy. 

To give an account of the earlier work, I have first to 
describe the geometric phase for spinning particles. This 
concerns a spinor state corresponding to a definite value s 
(integer or half-integer) for the component of spin along 
some direction r. An example is a spin eigenstate 
(s = ±%) of a neutron in a magnetic field with direction r. 
If the direction is cycled, that is, taken round a closed 
curve Con the unit r sphere, the state acquires a geometric 
phase equal to - s times the solid angle subtended by Cat 
the center of the sphere. As is well known, the spin-1

/2 case 
is isomorphic to the general quantum two-state system, 
where the Hamiltonian is a 2x 2 complex Hermitian 
matrix. 

Coiled light 
Raymond Y. Chiao, Akira Tomita and Yong-Shi Wu were 
quick to apply the spin phase to optics, by regarding a light 
beam as a stream of photons with quantization direction r 
along the direction of propagation.2 The two states, 
s = ± 1, correspond to left- and right-handed circularly 
polarized light. To cycle r they therefore had to cycle the 

Foucault pendulum at Griffith Observatory in 
Los Angeles, and diagram showing its 
anholonomy. The direction of swing does not 
return to its initial value when the pendulum 
completes its one-day trip around a circle of 
latitude. (In the diagram, the direction of 
swing e is parallel-transported around the 
diurnal circuit C by the loca l vertica l r. ) At 
the latitude of Los Angeles, the direction of 
swing comes back to its original value after 42 
hours, and so the pit is marked off in 42 
segments. (Courtesy of Edwin Krupp, Griffith 
Observatory.) Figure 1 

direction of propagation, which they accomplished by 
sending the light along optical fibers that were coiled into 
paths such as helices, and for which the initial and final 
tangent directions r were parallel. An obvious way to 
observe the geometric phase would be to split a beam of 
(say) left circularly polarized light into two coherent 
beams, send them along two oppositely coiled fibers, 
recombine them and detect the resulting opposite geomet­
ric phases by interference. Instead, Chiao, Tomita and Wu 
performed the simpler experiment of sending a single 
beam of linearly polarized light along a single fiber. The 
initial linear polarization is a particular superposition of 
the s = + 1 and s = - 1 states, which acquire opposite 
phases after passage through the fiber and so emerge in a 
different superposition, corresponding again to linear 
polarization, but now in a different direction. (The 
"interference" and "superposition" techniques correspond 
to two different general methods for detecting the phase, 
employing, respectively, one state and two different 
Hamiltonians or two states and one Hamiltonian.) 

One manifestation of the geometric phase for light is 
therefore a rotation of the direction of polarized light 
(figure 2) after it has traveled along a coiled optical fiber. 
The angle of rotation is equal to the solid angle through 
which the fiber tangent r has turned, implying that the po­
larization has been parallel-transported. Chiao and his 
coworkers themselves pointed out that this appears to be a 
phenomenon of classical optics, which although originat­
ing in the quantum mechanics of spinning photons 
survives the classical limit fz - 0 up to the level described 
by Maxwell's equations. They did not, however, show how 
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Fiber tangent r 

the rotation of polarization is contained in Maxwell's 
equations; nor had J. Neil Ross of the Central Electricity 
Generating Board Laboratories, in Leatherhead, England, 
who had demonstrated the rotation earlier, in a 1984 
experiment. (Ross implicitly assumed the parallel trans­
port law.) 

However, in a remarkable paper, published in 1941 
(the year I was born) and the first of our "anticipations," 
Vassily V. Vladimirskii had, in effect; done just that, in an 
extension of an earlier paper published in 1938 by Sergei 
M. Rytov.6 Rytov was concerned with the short-wave 
limiting asymptotics of electromagnetic waves in inhomo­
geneous media. He was dissatisfied with the conventional 
derivations of the generalized Snell refraction law of 
geometrical optics (ray curvature is equal to the compo­
nent of grad[log(refractive index)] perpendicular to the 
ray), because this ignores the vector nature oflight waves: 
There had to be a transport law for the directions e and h 
of the electric and magnetic fields. He showed that the 
law is parallel transport-of the orthogonal triad consist­
ing of e, hand the ray direction r. 

Vladimirskii's contribution-surprisingly modern in 
tone-was to show that Rytov's law is nonintegrable and 
implies the solid-angle law for the rotation of polarization. 
Vladimirskii pointed out one consequence of his analysis: 
Observation of polarization rotation of an outgoing ray 
relative to a parallel incident ray does not imply anisotro­
py (or chirality) of the intervening medium, because it 
could result from ray curvature induced by inhomogeneity 
of the medium. He did not state that parallel transport 
of the fields implies phase anholonomy for circularly 
polarized rays, but Rytov came close, remarking that it 
implies different phase velocities for the two circular 
polarizations. . 

In essence, the theory that Vladimirskii and Rytov 
developed contains the explanation of the experiments of 
Chiao's group. Strictly speaking, however, Vladimirskii 
and Rytov's analysis cannot be invoked, because those 
experiments employed monomode fibers, which are too 
thin for geometrical optics to be validly applied. It is 
necessary to use the full Maxwell equations, either in a 
modal analysis7 or, when recast as a Schri:idinger-type 
spinor equation, to enable immediate application of the 
spin-1 geometric phase formula.5 

It is worth pausing to note the political circumstances 
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Rotation of linear poiarization by parallel 
transport along a coiled optical fiber. The 
vectors e and h represent the electric and 
magnetic fields, respectively.. Figure 2 

in which Vladimirskii worked. In 1941, a few months 
after. he submitted his paper, the Soviet Union was 
plunged into the turmoil of World War II by Hitler's 
sudden invasion. · 

Polarization cycles 
In a different application to optics, I considered not light 
with a fixed state of polarization (circular, for example) 
and changing direction, but the opposite, namely light 
traveling in a fixed direction with a slowly changing state 
of polarization.8 A way to accomplish this, and thereby 
generate a geometric phase, would be through a transpar­
ent medium that was both anisotropic and chiral (such as a 
liquid in strong electric and magnetic fields) and so 
possessed both birefringence and gyrotropy. These prop­
erties would be reflected in the complex Hermitian 
dielectric tensor of the medium, which could be varied 
along the beam and then brought back to its original form. 
(Actually what is · relevant is only the 2 X 2 matrix 
representing the components of the inverse of this tensor 
perpendicular to the beam.)· 

This too had been anticipated, in a strikingly original 
paper published 30 years before by S. Pancharatnam of 
Bangalore.9 He was investigating the interference pat­
terns produced by plates of anisotropic crystal, and found 
existing theory inadequate to explain what he saw. In 
particular, he needed to define how two beams in different 
polarization states (linear and elliptic, for example) could 
have the same phase. He did this by considering the 
intensity of the wave obtained by coherent linear superpo­
sition of the two beams. As the phases of the individual 
beams are varied, this intensity waxes and wanes. When 
it is maximum, the two beams are defined as being "in 
phase." The two beams could represent successive states 
in the polarization history of a single beam, so this 
procedure also enabled him to define how a beam can 
preserve its phase while its polarization state is altered 
(not necessarily slowly). 

Pancharatnam then made the important observation 
that this law of phase preservation is nontransitive. Thus 
a beam may start out with a polarization 1, which is 
altered first to polarization 2, in phase with 1, then to 3, in 
phase with 2, and then back to 1, iil phase with 3; and yet 
the final polarization-1 beam need not have the same 
phase as the initial polarization-1 beam, in spite of the fact 
that all three local phase changes were zero. To calculate 
the phase change, he represented states of polarization as 
points on the "Poincare sphere" (see figure 3). In this 
picture, the poles represent left- and right-handed circular 
polarization; points on the equator represent linear 
polarizations (with the direction rotating by 180' in a 360' 



Poincare sphere of polarization states r. The 
phase change associated with a circuit C of 

polarization states is half the solid angle 
subtended by Cat the center of the 

sphere. Figure 3 

circuit, because two polarization orientations differing by 
180' are the same); and all other points represent elliptic 
polarizations. The path 1231 is a circuit Con the sphere, 
and Pancharatnam discovered that the associated phase 
change is half the solid angle subtended by Cat the center 
of the sphere. 

Clearly, Pancharatnam discovered what we would 
now call the geometric phase for polarization circuits of 
light. To make the connection with the way we see things 
nowadays, it is first necessary to know that the polariza­
tion associated with the point on the Poincare sphere 
indicated by the unit vector r (that is, the corresponding 
transverse electric field represented by the complex unit 
vector e) is represented by the complex eigenvector ofS·r, 
where S is the vector of three 2 X 2 Pauli spin-% 
matrices. 10 (The components of rare the Stokes param­
e~ers of the polarization.) This relation between polariza­
ti?ns and quantum states of spin-% particles-that is, 
with two-state systems-is unsurprising, because any 
polarization of light traveling in a fixed direction is a 
superposition of two basis polarizations-for example, left 
and right circular, or horizontal and vertical linear. The 
crucial step is now to demonstrate that parallel transport 
of these eigenvectors is equivalent to Pancharatnam's 
phase preservation rule for the associated polarizations. 
The "half the solid angle" rule follows at once from the 
spin-% analogy. · · 

Pancharatnam was a nephew of C. V. Raman, and so 
belonged to the distinguished dynasty that includes the 
astrophysicist S. Chandrasekhar, the liquid crystal physi­
cist S. Chandrasekhar, the crystallographer S. Ramase­
shan and the radioastronomer V. Radhakrishnan. When 
Pancharatnam wrote about polarized light, he was only 22 
years old. In spite of this brilliant beginning, his story 
ended sadly, with his untimely death at the age of 35. 

While writing this article I discovered some remark­
able papers written in 1975 by Martin S. Smith and 
Kenneth G. Budden, 11 who although unaware of the 
earlier works by Vladimirskii and Pancharatnam never­
theless provide a more general viewpoint into which these · 
fit as spe~ial cases. Budden and Smith were studying the 
propagation of short radio waves in the ionosphere, where 
the "ray" or "WKB" approximation is appropriate. Such 
wave fields are dominated by a complex exponential factor 
~hose phase is the familiar optical path length-the 
mtegral of the local wavenumber, They called this path 
integral "phase memory" because it depends on the 
properties of the medium-the atmosphere-along the 
entire propagation path. Thus it is nonintegrable, in 
contrast to the wave amplitude, which in the simplest 
theory is a " local" factor depending only on the properties 
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Equator (linear) 

S (right circular) 
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(such as refractive index) at the ends of the ray. 
Budden and Smith's contribution was to show that in 

all but a few cases the simplest theory is wrong, because 
there is an additional factor, which they called "additional 
memory," whose exponent also depends nonintegrably on 
the propagation path. The additional memory may be real 
or complex and so can contribute nonlocally to the phase 
or the amplitude. They gave a theory covering a very 
general class of waves, described by vectors whose 
evolution along the ray is driven by a matrix embodying 
the properties of the medium. Although they did not 
consider cycles of the medium parameters, their general 
formula expressing the additional memory as an integral 
along the ray can be shown to be exactly the one we are 
now familiar with in quantum mechanics, which can be 
viewed as a special case where the driving matrix is 
Hermitian and the ray parameter is time,12 

V 

C2 

c:::, 

w 

Line of degeneracies of elements of a real 
symmetric 2 X 2 matri x. The circuit C1 

encloses the line L of degeneracies and so 
generates a geometric sign change; C2 does 
not enclose L, and so does not generate such 
a change. Figure 4 
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As well as including technicalities that are still 
interesting today, 12 Budden and Smith gave many applica­
tions, demonstrating phase memory in seismic waves, 
magnetohydrodynamic waves, electroacoustic plasma 
waves and atmospheric acoustic gravity waves as well as i­
onospheric radio waves. (Readers are warned, however, 
that Budden and Smith's initial illustrative example, 11 

predicting that light traversing a transparent and vari­
ably optically active refracting medium will exhibit 
additional memory, is wrong because they employ an 
unphysical constitutive relation. When this is corrected, 
the additional memory is canceled by a part of the 
ordinary memory. 12

) 

Degeneracy 
The existence of geometric phases implies that quantum 
eigenstates are not single-valued under continuation of 
parameters in the Hamiltonian. Thus expressed, phase 
anholonomy appears to be a rather subtle property, 
especially when contrasted with the more familiar single, 
valued-ness demanded of wavefunctions under continu­
ation of position coordinates, which is necessary to get 
quantized energy levels (in the harmonic oscillator, for 
example). However, when detached from its original 
quantum mechanical context, the geometric phase can be 
regarded as an expression of a simple property of matrices 
that depend on parameters-that is, of families of 
matrices: Their eigenvectors are not single-valued when 
parallel-transported via changes of the parameters. After 
a parameter circuit C, the eigenvectors do not return to 
their original values. In the class of complex Hermitian 
matrices important for quantum physics, the failure to 
return takes the form of a phase shift. . 

Special among Hermitian matrices are real symmet­
ric matrices, which in quantum mechanics can represent 
Hamiltonians of systems with time-reversal symmetry­
for example, charged particles in electric, but not magnet­
ic, fields. The eigenvectors of these matrices are real, and 
so the only phase anholonomy is 1r, corresponding to a 
change of sign of the eigenvectors. The sign change occurs 
only if the circuit C encloses a degeneracy of the 
transported state. The simplest case is that of 2 x 2 
matrices 

38 

Nuclear coordinate circuit. The ci rcuit C is 
in the space of nuclear coordinates X of 

triatomic molecules. The circuit surrounds the 
equilateral molecule, for which there is an 

energy level degeneracy (at the conical 
intersection). Figure 5 
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Here degeneracies in the u,v,w parameter space corre­
spond to the line v = 0, u = w, and so there is a sign change 
in the eigenvectors only if C encloses this line (see figure 4). 

Such a simple property-even of 2 X 2 matrices-was 
not well known in 1983. I could find no reference to it in 
textbooks of matrix theory (and would welcome informa­
tion about any). Nevertheless, it was known, in particular 
to quantum chemists studying the vibrations and rota­
tions of molecules. In the Born-Oppenheimer (adiabatic) 
approximation, the coordinates of the nuclei are regarded 
as parameters, to which quantum states of the electrons 
are slaved. Nuclear configurations with symmetry can 
give rise to degeneracy of the electronic energies. In 1958, 
H. Christopher Longuet-Higgins, Uno Opik, Maurice H. 
L. Pryce and Robert A. Sack noticed that in the solution of 
a particular model the electronic wavefunctions changed 
sign when the nuclear coordinates made a circuit of the 
symmetric (degenerate) configuration (see figure 5). 13 

This is the 1r anholonomy of real symmetric matrices, 
recognized_ as a general phenomenon by Gerhard Herzberg 
and Longuet-Higgins14 in 1963. 

Longuet-Higgins and his coworkers realized that the 
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Drumhead-shape circuit. The circuit C is in 
the space of boundary shapes of triangular 

drums, and surrounds a shape for which the 
vibration mode is degenerate. (The shapes 
look the same because the circuit is small.) 

The dark and light areas of the vibrating drums 
correspond to the conventional labels + and - . 

Note that the vibrations in the triangles at 
the' beginning and end of the circuit (the 

triangles on either side of the arrow) differ 
on ly in phase, by 180'. Figure 6 

sign change has physical consequences when the nuclear 
coordinates are themselves quantized instead of being 
regarded as externally specified parameters: The vibra­
tion-rotation energies have half-odd-integer quantum 
numbers, rather than the usual integer ones. They 
remarked, "This half-oddness is at first sight strange, but 
may be understood by noting that [around a circuit] the 
electronic factor in the wavefunction will be multiplied by 
- 1, so that the angular part of the nuclear factor must do 

likewise if the total wavefunction is to be single-valued." 
This is the phenomenon of pseudorotation, which has been 
of considerable interest recently.15 

· Among mathematicians, the sign change was also 
known. In his celebrated text on classical mechanics, 
Vladimir I. Arnold describes it for a modal eigenfunction 
of a vibrating membrane, or drum, whose boundary is 
varied round a circuit C in the space of boundary shapes 
surrounding a shape for which the mode is degenerate.16 

For any point on the circuit, the drum eigenfunction is 
divided by nodal lines into regions that may be convention­
ally labeled + and - . Around the circuit, the nodal lines 
move over the domain and collide, disconnect and recon­
nect so as to change the + regions into - regions 
continuously, and vice versa, as figure 6 illustrates for a 
set of triangular membranes. Arnold traces the sign 
change to a 1976 paper of Karen Uhlenbeck,17 but, as we 
have seen, the chemists knew about it in 1958. 

Curved surfaces 
The 2X 2 sign change is much older. I do not know when: 
this was first recognized as a property of matrices, but it is 
implied by a result in Gaston Darboux's monumental 1896 
treatise on the ·differential geometry of curved surfaces.18 

This might be the first example of phase anholonomy, 
albeit the rudimentary 1r case. Locally, a smooth surface 
can be specified by its deviation z(x,y) from a plane, as 
figure 7 indicates. From this function one can form the 
2 X2 real symmetric Hessian (curvature) matrix H(x,y) of 
second derivatives, and x and y can be regarded as 
parameters. The eigenvalues of H are the principal 
curvatures of the surface at (x,y}--that is, the greatest and 
least curvatures of normal sections through the surface at 
(x,y). The corresponding eigenvectors are the directions of 
these special cuts, and are orthogonal. An unusual 
feature of this example is that the eigenvectors can be 
considered to lie in the parameter space, as well as being 
functions of the parameters. Degeneracies (x,y) corre­
spond to equality of the two curvatures-that is, to 
"umbilic points," where the surface is locally spherical 
rather than ellipsoidal or saddle-shaped as it is at typical 
points. U mbilics are singularities of the orthogonal net of 
curvature lines. The sign change characterizes such a 
singularity by a reversal of the curvature directions in a 
circuit of it. Alternatively stated, the Poincare index, or 
signed number of rotations associated with an oriented 

Space of triangles 

circuit, of the field of curvature lines near an umbilic is 
+ % or -% . 

A complete characterization of the geometry of an 
umbilic is complicated.19 Figure 8 shows the three typical 
patterns of curvature lines, one of which (the "star") has 
index - % and the others of which (the "lemon" and the 
"monstar") have index + % . The half-integer index is 
typical of singularities of line fields (which do not have 
arrows), such as those associated with eigenvectors of 
families of matrices, in contrast to the integer indices of 
vector fields (which do have arrows). The star and lemon 

. singularities are familiar, with one of the two orthogonal 
sets of lines deleted, as disclinations in the molecular line 
fields of liquid crystals,20

·
21 and in fingerprints. 

In 1976, Anthony J. Stone22 generalized the connec­
tion between degeneracy and the sign change13

•
14 by 

considering complex Hamiltonians. He realized that in 
this general case, where the wavefunctions are also 
complex, an arbitrary phase, not just 1r, could be generated 
by taking a system round a circuit C. Without giving a for-

z(x,y) 

Curvature lines 

~--------------x 
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Curvatures at a 
point on a surface. 
Locally, a smooth 
surface can be 
specified by its 
deviation z(x,y) 
from a 
plane. Figure 7 
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Star Lemon Monstar 

The three typical patterns of curvature lines near an umbilic singularity, where the surface is locally spherical. 
The star has index - 'I,. The lemon and monstar have index + 'I,. Figure 8 

mula for the · phase, he showed how its existence, for a 
succession of circuits that together cover a closed surface, 
could provide a topological indicator of the presence of a 
degeneracy. 

Another anticipation, of which I was regrettably 
unaware when writing my original paper, 1 was the 
important work by C. Alden Mead and Donald G. Truhlar 
in 1979, containing two developments in the theory of 
general complex Hamiltonians.23 This .theory would 
apply, for example, to systems with magnetic fields, which 
do not have time-reversal symmetry. Like Longuet­
Higgins and his coworkers, Mead and Truhlar were 
studying molecules in the Born-Oppenheimer approxima· 
tion. The first of the developments was that they not only 
realized that the electronic states must acquire a phase 
when the nuclear coordinates are cycled, but they also 
gave a general formula for the phase in the case of 
infinitesimal circuits. Second, they discovered another 
role for the expression whose line integral around the 
circuit generates the phase: It is the potential of an 
effective "gauge force" contributing to the dynamics of the 
nuclei. The effect of this force is to modify the nuclear vi­
bration-rotation spectrum, as in the special case of 
pseudorotation mentioned earlier. 

As elaborated elsewhere,24 in 1983 I was familiar with 
the 1r phase shifts of Longuet-Higgins and Darboux 
through studies of the quantum mechanics corresponding 
to classical chaos, where degeneracies play a useful .part. 
In retrospect it now appears natural that the generaliza­
tion to the full geometric "phase that launched a thousand 
scripts" should have been made in my department at 
Bristol. The reason is that in Bristol there had been 
several discoveries, over the years, of interesting physics 
associated with quantities that fail.to return after being 
taken round circuits-that is, anholonomy. I have fol­
lowed that intellectual thread elsewhere,21 and here 
simply list some of those contributions: the descriptions by 
F. Charles Frank of crystal dislocations (1951) and liquid 
crystal disclinations (1958) in terms of anholonomy; the 
description of the 1r phase for molecular electrons (1958) by 
Pryce, one of Longuet-Higgins 's coauthors and head of the 
Bristol physics department; and the discovery by Yakir 
Aharonov and David Bohm of the electron phase shift in a 
circuit of a magnetic flux line (1959). 
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