SUPERCONDUCTIVITY AND
OTHER MACROSCOPIC
QUANTUM PHENOMENA

A diverse class of physical systems—including superconductors,
superfluid helium, lasers and quasi-one-dimensional
conductors—derive their unusual properties from

the macroscopic occupation of a single quantum state.

John Bardeen

As first suggested by Fritz London, superconductivity and
superfluid flow in liquid helium are macroscopic quantum
phenomena. They depend on the fact that the energy
states of even macroscopic objects, although closely
spaced, are discrete, and on the statistical mechanics of
systems made up of identical particles. The electrons in a
superconducting metal, with a spin of one-half, obey
Fermi-Dirac statistics and the exclusion principle. Heli-
um atoms of isotopic mass 4 obey Einstein-Bose statistics,
in which there can be many particles in the same quantum
state, as is the case with photons, the quanta of radiation,
“if they are regarded as particles.

A common feature of these systems, as well as other
macroscopic quantum systems, such as lasers and quasi-
one-dimensional metals that undergo a Peierls transition,
is macroscopic occupation of a state of the system. In
superfluid helium at rest, there is a finite probability of
finding the helium atoms with exactly zero velocity and
momentum in spite of the large zero-point motion and
thermal agitation (see figure 1). The probability is finite at
temperatures below the A4 transition to the superfluid state.

In superconductors as well as in superfluid helium of
isotopic mass 3, there is a pairing such that the momen-
tum of each pair is exactly the same as that for all other
pairs. In lasers one of the modes of electromagnetic
radiation possible in a cavity is macroscopically occupied.
In quasi-one-dimensional metals at temperatures below
the Peierls transition, it is a phonon mode that is
macroscopically occupied. I shall discuss some common
properties and ways of thinking about these systems.

Superconductivity was first observed at Leiden by
Heike Kamerlingh Onnes in 1911, when he noted that the
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resistance of a rod of frozen mercury suddenly drops to
zero when cooled to the boiling point of helium, 4.2 K. To
show that the resistance is really zero for all practical
purposes, he placed a lead ring in a magnetic field, cooled
it below the transition temperature to the superconduct-
ing state, and then removed the external field. Currents
induced to keep the flux through the ring from changing
persisted indefinitely as long as the ring was kept in the
superconducting state.

It was not until 1961 that William Fairbank and
Bascom Deaver found experimentally that the flux
threading a superconducting ring is quantized (see fig-
ure 2). The total flux ® cannot have just any value, but is
quantized so that it is an integral multiple of a small flux
unit, hc/2e = 2X 1077 gauss cm?® In his book Superfluids,
published in 1950, London had predicted such a relation,
with e rather than 2e in the denominator.

The. superfluid properties of liquid helium when
cooled below the A transition at 2.2 K were discovered in
1938 by Jack Allen and collaborators and by Peter
Kapitsa. A superfluid cannot be kept in an open beaker.
A thin film will form on the inner and outer surfaces of the
beaker. The helium in the film will flow up the inner
surface and down the outer surface, and drip off the
bottom until the beaker is empty. Superfluid helium flows
through narrow channels without friction.

Semiconductor laser

The semiconductor laser illustrates the essential features
of the systems I am discussing—discrete rather than
continuous states with macroscopic occupation of one of
them—in their simplest form. A semiconductor cavity
with reflecting walls defines a set of normal modes for
electromagnetic radiation. By current flow from a p-n
junction, an excess population of electrons in the conduc-
tion band and holes in the valence band is created. These
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tend to recombine, emitting photons whose energy hv is
approximately equal to the energy gap. For excess
population below a threshold value, the emitted radiation
goes to a continuum of closely spaced modes. Above the
threshold, a large part, a macroscopic fraction, of the
radiation goes to a single mode (see figure 3).

The explanation is stimulated emission of radiation
by the chosen mode. The probability of stimulated
emission is proportional to the number of quanta of
radiation N, present in the mode. As the excess popula-
tion of electrons and holes increases above the threshold,
N, increases exponentially until a steady state is reached
in which a sizable fraction of the total emitted energy goes
to the single mode. While the propagation of the
electromagnetic radiation can be understood classically in
terms of Maxwell’s equations, the concentration of energy
in a single mode of precise frequency cannot.

Quantization of circulation

In recent years, experiments have been done by John ‘

Reppy, William Zimmerman Jr and R. De Bruyn Ouboter
that are analogous to those that show flux quantization. A
capillary filled with liquid helium is formed into a circular
ring. The ring is set in rotation above the superfluid
transition temperature, cooled while rotating until the
helium has reached the superfluid state, and then the ring
is stopped. The superfluid helium keeps its original
circulation around the ring. The angular momentum of
the circulating helium can be detected from torque
developed if the axis of circulation is tilted. These are the
same forces that keep a spinning top from falling. From
measurements of the very small forces from the circulat-
ing helium, it has been found that the circulation (the line
integral of the velocity around the ring) is quantized:

c= f{)vs a1="h

my

Here n is an integer and m, the mass of a helium atom.
If written in terms of the momentum p, the quantum
condition is

3€ps dl = nk

the same condition suggested by Niels Bohr in 1913 to
describe the allowed orbits in atomic hydrogen. Bohr’s
condition follows from the wave nature of the electron and
the de Broglie relation between momentum and wave-
length, p = h/A. Tt reflects the requirement that there be
an integral number of wavelengths around the path of
integration.

In an ingenious experiment, W.F. “Joe” Vinen
measured the circulation around a wire lying along the
axis of a cylindrical tube containing superfluid helium.
Under the conditions of his experiment, he observed either
zero or one unit of circulation, never anything in between.

Quantized vortex lines with one unit of circulation,
h/m,, are observed in superfluid helium. If a bucket of he-
lium is rotated and then cooled below the A transition, the
helium tends to rotate as a rigid body with the vorticity
provided by an array of quantized vortex lines.

Very recently Richard Packard and his students have
done an experiment similar to that of Vinen to measure
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Fritz London (1900-1954), for many years a
professor at Duke University, was the first to
suggest that both superconductivity and
superfluid flow in liquid helium are
manifestations of quantum effects operating
on the scale of macroscopic objects.

the circulation in superfluid He®-B. The He® atoms obey
Fermi-Dirac statistics and undergo a pairing transition to
a superfluid phase below T, ~0.3 mK. The phase change
was first observed by David Lee, Robert Richardson and
Douglas Osheroff in 1972. The theory, due mainly to
Tony Leggett, is analogous to the theory of superconduc-
tivity, but with triplet rather than singlet spin pairing.
Packard and his collaborators found that below 7/ T, ~0.2,
the circulation around the wire is stable for zero or +1
units of circulation, A/2m,, where 2m; is the mass of a
pair (see figure 4).

Superconductivity

The electrons in a superconducting metal form a charged
superfluid. A current produces a magnetic field that
affects the electrons’ motion. In a magnetic field described
by a vector potential A, the drift velocity of an electron, v,
is related to the canonical momentum p, by
e*

m*vs =Pps — —A

c
where m* = 2m, and e* = 2e, the mass and charge of a pair
of electrons. The current density is J, = p, v,, where p, is
the charge density of the superconducting electrons.

The supercurrent in a superconducting ring flows
only in a thin penetration region near the inner surface.
In the interior of a ring of reasonable thickness,
J,=v,=0,s0

iﬁps dl= ﬁf{)Adl —Co_nn
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where ® is the total magnetic flux threading the ring.
This leads to the flux quantization mentioned earlier.

A superconductor is not simply a body with infinite
conductivity. As'shown by Walther Meissner in 1933, the
state with the flux excluded is the unique stable state of a
simply connected superconductor in a magnetic field. If
the material is cooled into the superconducting state in the
presence of a field, the flux is expelled from the interior,
making the superconductor a perfect diamagnet (B = 0).

In a class of superconductors called type II, above a
lower threshold field H,, flux enters the interior in the
form of an array of quantized flux lines. A flux line may
be regarded as a normal core surrounded by the supercon-
ducting bulk. Currents circulating in the superconductor
around the axis of a flux line give a magnetic field along
the axis. The total flux along the line is one flux unit,
hc/e*. If the flux lines are “pinned” so they cannot move,
a supercurrent will flow around the normal cores with no
dissipation of energy.

In a type-I superconductor it is not energetically
favorable to form flux lines. To get a persistent current in
a superconducting ring to decay and flux to leak out of the
ring would require the equivalent of the passage of a
vortex line through the body of the ring. It requires much
more than thermal energy to form a flux line, so a
supercurrent is extraordinarily stable. Decays have been
observed only in rings of small thickness at temperatures
very close to the transition temperature.

In type-II superconductors there is no dissipation as
long as the flux lines remain pinned. In a large
superconducting magnet one meter in diameter with a
flux density of 4 tesla, the total number of flux quanta can
be as large as 10'%. It is the difficulty of changing this
large number by one flux quantum that prevents decay of
the currents flowing around the superconducting coil.

Two-fluid model and superfluid flow in He4

In 1934 Hendrik Casimir and Cornelis Gorter proposed a
phenomenological two-fluid model to account for the
thermal properties of superconductors. They suggested a
model of interpenetrating normal and superfluids such
that the total charge density of the electrons is
p =pn +ps. The current density isJ = p, v, + p, V,, with
the normal component p, v, subject to the usual dissipa-
tion in an electric field. At high frequencies, such a
dissipation is observed in the penetration depth of the
magnetic field.

Casimir and Gorter were able to get an approximate
fit to the thermal properties by assuming that p,
increases with the fourth power of the absolute tempera-
ture. There would be a second-order transition to the
normal state when p, =p and p, =0, with a jump in
specific heat but no latent heat. The results of experi-
ments on surface impedance at microwave frequencies
could be accounted for if it were assumed that the normal
component is subject to the usual scattering and loss.

In 1938 Laszlo Tisza suggested a similar model for
superfluid helium. The normal component flows down a
temperature gradient, and there is a counterflow of the
superfluid component. In steady state, a pressure differ-
ence develops between a heated component and the bulk of
the fluid. A striking example of this behavior is the
fountain effect of Jack Allen and H. Jones, in which the in-
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Momentum distributions of atoms in the
ground state of superfluid helium-4 at 7= 0 K.
In a noninteracting Bose gas (shown in black),
100% of the particles are in the zero
momentum state. In an interacting system
(shown in magenta), because of zero-point
motion the occupation probability is reduced
to about 10%, but it is still finite. The
probability remains finite up to the A-transition
temperature. Figure 1
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Quantized flux. The total flux threading a
superconducting ring is an integral multiple of
a small flux unit, &, = hc/2e=2x10"7
gauss cm2,  Figure 2
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Light intensity as a function of
wavelength in a Ga,_, Al, As—GaAs
quantum well heterostructure laser.

Curve a (green) was obtained using an
injection current just below the threshold
for lasing, curve b (red) using a current
about 30% above threshold. As shown
in the inset, the total light intensity of
curve b is almost an order of magnitude
larger than that of curve a, with nearly all
the power going into a single mode that is
macroscopically occupied. (Adapted
from L. ). Guido et al., Appl. Phys. Lett.
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side of a vessel is heated to make a fountain as much as 30
centimeters in height. .

The two-fluid model may be illustrated by a model of
flow between parallel walls with which the normal fluid is
in thermal equilibrium. If the superfluid is at rest and the

walls are moving with velocity v, , the flow is p, v,,. The"

superfluid at rest is a state of macroscopic occupation of
the momentum p, = 0. If the walls are at rest and the su-
perfluid is moving with velocity v, the flow is p,v,. If
both are moving, the flow is pv =p, v,, + p, V.

Both v, and v, are required to specify the state of the
fluid for thermal equilibrium. In a classical system, from
Galilean invariance, it is necessary to give only v, , the
velocity of the reference frame in which the system is in
equilibrium. The state of macroscopic occupation, a
nonclassical concept, leads to a breakdown of Galilean
invariance. In the case of a superconductor, this is
referred to as broken gauge symmetry.

Kapitsa did beautiful experiments to demonstrate the
two-fluid properties in dramatic ways. The superfluid
component behaves as a perfect fluid with potential flow
(no vorticity) and zero viscosity. The fluid thus flows
around an obstacle in its path, exerting no force. The
normal component exerts the usual forces expected for a
viscous fluid. If the normal component flows from a
heated container into the bulk superfluid, it will exert a
force on a vane immersed in the fluid. A spindle with
vanes can be made to rotate from the force of a jet. The re-
action from jets of normal fluid can put a spider consisting
of a ring of jets into rotation.

Lev Landau was able to account for the two-fluid
model of superfluid helium by invoking flow in the ground
state and a spectrum of low-lying elementary excitations
(see figure 5). The excitations may be regarded as a
weakly interacting gas in the ground-state vacuum.
Landau suggested that they could be described by a wave
vector k of magnitude 27/4. Those with wavelengths long
compared with the interatomic spacing are phonons, the
quanta of sound waves, with density oscillations. Those in
the vicinity of an energy minimum at a larger wave vector
Landau called rotons. It was not clear why only these two
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excitations would exist at low temperatures, nor was the
role of statistics. The phonon modes are what might be ex-
pected for a solid body, not a liquid.

Richard Feynman attempted to understand how the
phenomenological equation of the two-fluid model and
Landau’s excitation spectrum for superfluid helium follow
from first principles. He suggested that the ground-state
wavefunction W, could be taken as a real, everywhere-
positive, symmetric function of the particle coordinates
(X1,Xg, . . . ,X,), where symmetry means that ¥, is un-
changed by every permutation of the particle coordinates.
The square of W, gives the probability density for the
particle distribution and is presumed to be small for
distributions with any two particles close together.

Superfluid flow may be described by multiplying by a
phase factor

v=y, exp(iztﬁ(x $ ))

where p, = myv, =7grad ¢(x). This function thus de-
scribes potential flow with a velocity potential (#/m,)¢.
Superfluid flow is that of a perfect fluid with zero viscosity
and no vorticity. It carries no heat or entropy.

Roger Penrose and Lars Onsager argued that the pair
distribution function derived by integrating ¥, 2 over the
coordinates of all particles except two should have a
coherent part of the form ¥(x;)i¥(x,), which they estimated
to be about 10% of the total. This coherent part comes
from macroscopic occupation of the state with momentum
p =0, with a probability of about 10%.

The conjecture of Penrose and Onsager was verified in
a computer calculation done by a former student of mine,
William McMillan, for his PhD thesis. It was the first
application of Monte Carlo methods to a quantum
problem. He found that the occupation of the zero-
momentum state is about 11%, close to the value
suggested by Penrose and Onsager. Since then, more
elaborate calculations have been done, without significant
changes in the results. Thus London’s thought that the
macroscopic occupation predicted for a Bose gas would not
be qualitatively altered by the large interactions present



Average value of circulation in superfluid
He3-B (in units of A/2m;) measured for 10
minutes after the angular velocity of the
cryostat has been ramped to Q,,,, and back
to 0. Data for positive angular velocities were
first taken. Then the cell was warmed up
above 7, to remove any vorticity. Data for
negative angular velocities were then taken
after cooling down again. (Adapted from a

paper by W. Davis, R. Zieve, ). Close and -

R. E. Packard, given at the International
Conference on Low-Temperature Physics in
Sussex, UK, in August.) Figure 4

in superfluid helium has proved to be correct.

The phonon part of Landau’s spectra of elementary
excitations comes from longitudinal density oscillations.
The theory of the roton part, important for 7'> 0.5 K,
proved to be more elusive. Progress was made by
Feynman and Michael Cohen in 1957 and much more by
David Pines and his students in the 1980s. The complete
microscopic explanation is still subject to debate.

Microscopic theory of superconductivity

The breakthroughs that led to an understanding of
superconductivity occurred in the 1950s. Most important
was the discovery of the isotope effect (the dependence of
the transition temperature on isotopic mass) and Herbert
Frohlich’s independent suggestion that interactions
between electrons and phonons are involved.

Frohlich and I both attempted to develop theories
based on the self-energy of the electrons in the field of the
phonons. It soon turned out that these energies are
included in the normal state. The energies of states near
the Fermi surface are changed by the interaction, but not
in such a way as to introduce an energy gap or otherwise
give a departure from normal behavior.

The states for electrons in a metal are characterized
by a wave vector k and spin ¢ in one-to-one correspondence
with the electron states in a noninteracting Fermi sea. At
T =0K, those states below the Fermi surface are occu-
pied, those above, empty. With increasing temperature,
electrons are thermally excited to quasiparticle states
above the Fermi surface, leaving unoccupied states below.
If a number of particles are excited, they are not exact
eigenstates of the system because of residual interactions
between them. These include an attractive electron-
phonon interaction and a screened Coulomb interaction.
" The criterion for superconductivity is that the net
interaction be attractive for quasiparticles with energies
close to the Fermi surface.

In 1955 Leon Cooper came to the University of Illinois
as a postdoctoral research associate to join one of my
graduate students, Robert Schrieffer, in attacking the
problem from this point of view. Less than two years later,
we found the long-sought explanation of the mystery of
superconductivity. The ground-state wavefunction of a
superconductor can be considered to be a sum of low-lying
normal configurations in which the quasiparticle states
are paired such that if the state k1t is occupied, then — k|
is also occupied. The states of opposite spin and momen-
tum are either both occupied or both empty.
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When there is current flow, the paired states
(k;1,k,!1) all have exactly the same net momentum,
m*vy = 2mv, = #i(k, + k). It is the common momentum
of the paired states that gives the long-range order in
momentum required by London. Scattering of individual
particles does not change the common momentum of the
paired states, so the current persists in time.

Cooper, Schrieffer and I gave an excitation spectrum
for quasiparticles in a superconductor in one-to-one
correspondence with those of the metal in the normal state
(see figure 6). A minimum amount of energy, the energy
gap, is required to create a pair of quasiparticle excitations
from the ground state.

There is strong evidence that pairing is responsible for
superconductivity in the high-T, ceramic oxides, although
the lifetimes of the states that are paired differ from those
of ordinary metallic superconductors.

Transport in quasi-one-dimensional metals

As a final example of discrete states and macroscopic
occupation, I shall discuss transport of electrons by
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Landau spectrum of elementary excitations in
superfluid He?. Excitations of small wave
vector (long wavelength) are phonons, quanta
of longitudinal density fluctuations. Those of
short wavelength are similar to particles
moving in a fluid. Excitations at the energy
maximum are called maxons, at the minimum,
rotons. Above 0 K, the normal component is
a weakly interacting gas of elementary
excitations. Figure 5
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moving charge-density waves in quasi-one-dimensional
metals. As early as 1954, Frohlich suggested transport by
moving charge-density waves as a model for a supercon-
ductor. In 1977 such transport was observed by Pai-
Phuam Ong, Pierre Menceau and Alan Portis in NbSe,,
and it has since been found in a number of other
compounds that form linear-chain structures. While not
superconductors, they have many interesting properties in
their own right.

At high temperatures, conduction in quasi-one-dimen-
sional compounds is metallic, with the Fermi surface
consisting of fairly flat sheets normal to the chain direction
at + kp. The electrons couple strongly with a phonon of
wave number 2k;. As a result of the electron-phonon
interaction, the 2k; phonon mode becomes softened. The
frequency of the mode decreases with decreasing tempera-
ture and finally goes to zero at the Peierls transition
temperature. The mode becomes macroscopically occu-
pied at lower temperatures, with formation of a charge-
density wave of electron and ion displacements.

An energy gap (the Peierls gap) opens up at + kp and
the electrical conductivity becomes thermally activated.
Since the wavelength is in general incommensurate with
the lattice period in an ideal crystal, there is no preferred
position for the charge-density wave in space. The phase
can have any value. What Frohlich suggested is that the
charge-density wave could move and transport electricity.

For a drift velocity vy, the charge density is

p=p; sin2kp(x —v4t)]

One may regard the Fermi distribution, along with the
Peierls gaps, as being displaced by a wave vector q such
that 7iq = mvy.

Experiments showed that the wave does not move
freely, but is pinned by the phase-dependent energy from
impurities or other lattice imperfections. What has been
observed is that there is no charge-density-wave motion
below a threshold field E; and that the current
associated with motion increases only gradually as the

Normal

Energies of quasiparticle states near
the Fermi energy £¢ for normal and
superconducting metals. The energy
levels in the superconducting state are
in one-to-one correspondence with
those in the normal state, but are
changed by introduction of an energy
gap of magnitude 2A. The distribution
of states in energy is shown

on the right. Figure 6
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pn=N(Er)

field is increased above threshold. The conductance,
Gepw = Icpw /E, varies approximately as G, exp( — E,/E)
for E> ~2E. (see figure 7).

The exponential form suggests that depinning above
threshold occurs by a tunneling process. The original
investigators, Ong and his collaborators, proposed a model
in which depinning occurs by Zener tunneling through a
small pinning gap. They abandoned the theory when they
found that when applied to a single chain of atoms the pin-
ning energy is far smaller than the thermal energy. In
1979 I pointed out that a phase-coherent volume in which
the 2k phonons are defined contains many parallel
chains. The pinning energy in the volume can be far
larger than kg7, so that depinning does not occur
thermally. .

A quantum tunneling step is required to increase the
momentum of the charge-density wave in an electric field
because the momentum is quantized in units of 2%k,. As
Frohlich pointed out, the momentum is given by the
difference between the number of 2k phonons moving to
the right and the number moving to the left:

(Ng — N)2#ky = N, My,

where Ny is the number moving right and NV}, the number
moving left. On the right-hand side of the equation, N, is
the number of electrons in the volume concerned, My is
the Frohlich mass (M ~1000m,), which includes the
momentum associated with ion motion, and v, is the drift

- velocity of the wave.

The number Ny — N, is.large. Even for a modest
current density of 1 amp/cm? in a phase-coherent volume
of 107'2 em?® containing 10° electrons, Ny — IV, is about
10%. But with impurity pinning, even to increase the
momentum by one unit of 2%k, requires a tunnel step.
The step requires taking an electron from the left of the
Fermi sea to a ground-state configuration on the right,
with the added momentum being shared with the ion
motion. The 27ik; momentum is with the electrons only a
fraction m, /My of the time. Although the tunneling is
from one ground state to another moving slightly faster,
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the tunneling probability is the same as that for interband
Zener tunneling across a small pinning gap:
P(E) =exp(— Ey/E)

Many quasi-classical calculations have been made
that ignore this factor. Such calculations start with the
equation for free acceleration, which is derived from
semiclassical equations that do not include the tunnel step.

The field E should be regarded as a voltage gradient
that includes the effects of concentration gradients
corresponding to elastic deformations of the charge-
density wave in addition to forces resulting from pinning.

Free acceleration occurs only over a relaxation time 7,
which is larger by a factor of about My/m,. than the
relaxation time 7, for electrons above the Peierls transi-
tion. The current density is then

n.e*7E P(E)

My
where n, is the density of electrons.

The tunnel step allows the possibility of photon-
assisted tunneling. From the theory of photon-assisted
tunneling as developed by John Tucker for superconduct-
ing tunnel junctions, one can express the ac conductivity,
and effects of combined ac and dc fields, in terms of the dc
current-voltage characteristic. This theory has been
remarkably successful in accounting in a quantitative way
for a wide range of experiments on transport in quasi-one-
dimensional metals. One consequence is that the ac
conductivity scales with the dc, with the conductivity due
to a charge-density wave of angular frequency o propor-
tional to exp( — w, /o).

In spite of the remarkable success of the tunneling
model over more than a decade, many theorists in the field
still try to account for the data with classical theories that
ignore the tunnel step.

n.evy =

Concluding remarks

All of the remarkable macroscopic quantum phenomena I
have discussed depend on the fact that the quantum states
of macroscopic bodies are discrete, aithough closely
spaced, and that there can be macroscopic occupation of
one or a selected group of them. To define the system, it is
necessary to specify the state of macroscopic occupation
(or vacuum state) as well as the velocity of the walls with

10 University of lllinois, Urbana—
Champaign, 1987.) Figure 7

which the system comes to thermal equilibrium. As it
becomes possible to design and build structures on smaller
and smaller scales, it is well to keep these essential
features of macroscopic quantum systems in mind. If
many electrons are involved in a phase-coherent step, the
energy involved can be much larger than thermal energy
even though the energy per electron is smaller.

* - x x

This article is based on the Julian Mack lecture given at the
University of Wisconsin in April 1990, and on my lecture
sponsored by Sony Corporation, given in Tokyo in May 1990.
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