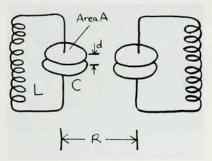
REFERENCE FRAME

WITH APOLOGIES TO CASIMIR


Daniel Kleppner

The Casimir effect, in case you have forgotten, is an attraction between conducting planes that arises from the vacuum energy in the intervening space. The force is too weak to command great attention-in fact, it is barely detectable-but Hendrik Casimir's line of reasoning has nevertheless been extraordinarily productive. By encouraging a rather literal view of vacuum fluctuations, his approach unifies and simplifies phenomena such as the van der Waals force, resonance dispersion and the effects quantum electrodynamics produces in a cavity, such as inhibited spontaneous emission and vacuum Rabi oscillations. On the cosmic scale of things these might seem like small potatoes, but Casimir's thinking also underlies the most plausible explanation yet for Creation-namely, generation of the universe from vacuum fluctuations.

Casimir's papers on vacuum forces and the van der Waals interaction¹ are not easy reading because the mode structure of an extended system is a trifle complicated mathematically. However, the physically important results practically pop out if one limits the system to two modes. So, herewith apologies to Casimir for doing crudely today what he did elegantly more than 40 years ago—is a matchbook calculation of the van der Waals force and some of its cousins.

Consider a system composed of two harmonic oscillators—identical LC circuits will do nicely. The energy of each oscillator is given by $(n+\frac{1}{2})\hbar\omega_0$, where n is its occupation number and $\omega_0=1/\sqrt{LC}$. The oscillators are in their ground states, located so far apart that any interaction is negligible. Their energy is $E_0=\frac{1}{2}\hbar\omega_0+\frac{1}{2}\hbar\omega_0$. Suppose next that the oscillators are arranged as shown

Daniel Kleppner is the Lester Wolfe Professor of Physics and associate director of the Research Laboratory of Electronics at MIT. in the figure below, separated by some distance R and interacting via their electric dipole fields. The degeneracy

of the two modes is split, and the natural frequencies become $\omega_{\pm}=\omega_0\sqrt{1\pm\kappa}$, where a simple calculation shows that the coupling coefficient κ has the value $Ad/4\pi R^3$. (Out of respect for Casimir, who does not much care for the SI system, I am using Gaussian units.) The system's energy is now $E'=\frac{1}{2}\hbar\omega_{+}+\frac{1}{2}\hbar\omega_{-}$. The interaction energy is

$$\begin{split} \Delta E &= E' - E_0 \\ &= \frac{1}{2} \hbar \omega_0 (\sqrt{1+\kappa} - 1) \\ &+ \frac{1}{2} \hbar \omega_0 (\sqrt{1-\kappa} - 1) \end{split} \tag{1}$$

Evaluating this result to lowest order in κ yields

$$\Delta E = \, - \, \frac{\hbar \omega_0}{8} \, \kappa^2 = \, - \, \frac{\hbar \omega_0}{8} \, \frac{\alpha^2}{R^6} \quad (2)$$

The symbol α , whose value equals the polarizability of the capacitor, is introduced to emphasize the similarity of the LC circuit to an atomic system. Equation 2 has the same form as the usual expression for the van der Waals interaction of two atoms.

The van der Waals interaction is generally described in terms of a correlation between the instantaneous dipoles of two atoms or molecules. However, it is evident that one can just as easily portray it as the result of a change in vacuum energy due to an alteration in the mode structure of

the system. The two descriptions, though they appear to have nothing in common, are both correct. Incidentally, although we considered identical oscillators, the result also holds for nonidentical oscillators, with suitable modifications of the constants.

If we had considered magnetic, rather than electric, coupling, the natural frequencies ω_{\pm} would have been $\omega_0/\sqrt{1\pm\kappa}$ instead of $\omega_0\sqrt{1\pm\kappa}$. The result would have been a van der Waals repulsion. Such a repulsion is not generally observed in atomic and molecular systems because magnetic dipoles are smaller than electric dipoles by roughly $\alpha={}^1\!/_{137}$. However, in other coupled systems, such as an atom and a cavity, either sign of interaction can occur. If one wants to flog the argument to the point of diminishing returns, one can include retardation, terms due to higherorder multipoles, and angular effects.

The first excited state of the system, that is, a state in which one of the occupation numbers is unity, is a good deal more interesting than the ground state because it displays a variety of effects that are first order in κ . If the excitation is in the ω_+ mode, for instance, equation 1 becomes

$$\begin{split} \Delta E &= E' - E_0 \\ &= \frac{3}{2} \hbar \omega_0 (\sqrt{1 + \kappa} - 1) \\ &+ \frac{1}{2} \hbar \omega_0 (\sqrt{1 - \kappa} - 1) \end{split} \tag{3}$$

Depending on which mode is excited, the two possibilities are

$$\Delta E_{\pm} = \pm \frac{1}{2} \hbar \omega_0 \kappa = \pm \frac{1}{2} \hbar \omega_0 \frac{\alpha}{R^3}$$
 (4)

In molecular physics this interaction goes by the name of resonance dispersion energy, "dispersion energy" being the generic term for all such two-body electrostatic couplings. Because it is first order, resonance dispersion energy can be large, large enough to bind atoms into long-range molecules—molecular states with radii of tens or even hundreds of angstroms.

Seems impossible...125 kV and 250 watts in only a 5.25 inch panel? Well, it's not! We've done it with the brand-new WR Series of regulated high voltage power supplies. And we didn't sacrifice the reliability and performance that you expect from Glassman. Three panel configurations are available...analog display, digital display, and blank...making the WR Series suitable for most applications and environments. Local control is by means of separate 10-turn potentiometers, output voltage and output current, with locking vernier dials. Full remote facilities are standard on all versions, including output voltage and current programming and monitoring terminals, TTL high voltage enable/disable, safety interlock terminals, and a +10 volt reference source to drive external potentiometers. Voltage ranges available are 0 to 85 kV, 0 to 100 kV, and 0 to 125 kV. Voltage regulation is better than 0.005%, line or load, and current regulation is better than 0.05% from short circuit to rated voltage. Ripple is less than .05% of rated voltage at full load. The WR Series responds to a 50% load transient in less than 3 milliseconds. Automatic crossover from voltage or current regulation, dependent on load conditions, is a standard feature. Options include 100 V (for use in Japan) or 220 V AC power inputs, instead of the standard 105–125 V input, a current trip activated by an overload condition, zero start interlock, and slow start ramp.

More information is yours for the asking. We think then you'll call us supportive, innovative, and offering the best value in high voltage power supplies. But don't call us "too late" to help with your next application!

Innovations in high voltage power supply technology.

GLASSMAN HIGH VOLTAGE INC.

GLASSMAN U.S.A.

Glassman High Voltage. Inc. P.O. Box 551 Route 22 East Salem Industrial Park Whitehouse Station, NI 08889 U.S.A Telephone: (908) 534-9007 TWX: 710:480-2839 FAX: (908) 534-5672

GLASSMAN EUROPE

Glassman Europe Limited Studio 4 Intec 2 Wade Road Basingstoke Hampshire RG240NE England Telephone (0256) 810808 FAX (0256) 810815

GLASSMAN JAPAN

Glassman Japan High Voltage Limited Taira Building 1-17. Taira 1-chome Miyamae-ku. Kawasaki 213 Japan Telephone: (044) 877-4546 FAX: (044) 877-3395

REFERENCE FRAME

The system becomes more colorful if we consider a two-level atom interacting with a resonant cavity. Provided that the excitation number is limited to unity, this system is formally identical to a pair of harmonic oscillators. In its excited state, the atom and cavity attract or repel depending on whether the system is in its symmetric or antisymmetric state. If the excitation is initially localized on one oscillator, for instance by introducing an excited atom into the cavity, the atom and cavity will spontaneously exchange energy at the rate $\Delta E/\hbar = \kappa \omega_0$. This resembles classical beating, except that one is hard pressed to identify any classical coupling. For example, dipole coupling is by no means evident, because an excited atom has no dipole moment. A number of groups are exploring the behavior of atom-cavity systems using the wizardry of laser spectroscopy, superconducting cavities and modern optics, and this spontaneous oscillation will probably be observed before too long. It already has a name-in fact, two names. Some call it a vacuum Rabi oscillation; others call it a Jaynes-Cummings oscillation. Recent research along these lines has been described by Serge Haroche and myself (PHYSICS TODAY, January 1989, page 24).

It is not difficult to imagine the effect of coupling more cavities to the atom-cavity system. As the number of normal modes increases, the initial excitation takes longer and longer to return to the atom. In the limit of a continuum of modes, the excitation never returns. Instead, we observe the ubiquitous phenomenon of spontaneous emission. From this point of view, the two-mode atom-cavity system executes what might be called reversible spontaneous emission. If the cavity is mistuned, the beat period lengthens and the energy transfer becomes less and less complete, until the atom resides permanently in its excited state. This phenomenon, which has been witnessed in the laboratory, has acquired the name of inhibited spontaneous emission.

So what have we learned? First, that one must take the vacuum seriously; second, that intermolecular forces and a number of slightly bizarre radiative phenomena, and possibly even Creation, have something in common; and third, that Casimir is pretty smart.

Reference

 H. B. G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948). H. B. G. Casimir, J. Chim. Phys. 47, 407 (1949).

Everything You'll Ever Need From a Cryogenic Temperature Controller — Period.

Lake Shore Models DRC-91C and DRC-93C Temperature Controllers utilize true analog control under digital management to provide control stability to within $\pm\,0.001$ K. In addition, these high performance controllers are compatible with virtually all cryogenic temperature sensor types. Features include:

- Control of temperature from 0.3K to 873K
- Dual sensor inputs for control and display of temperature
- 3 term (PID) analog control
- IEEE-488 and RS232C interfaces
- Multiple sensor curve storage
- Internal programming temperature profiling

For more information, circle the reader response card or call Lake Shore at **614-891-2243.**

Circle number 9 on Reader Service Card

64 E. Walnut St., Westerville, OH 43081 USA (614) 891-22-Telex: 24-5415 CRYOTRON WTVL Fax: (614) 891-1392 © Lake Shore Cryotronics. Inc. 1990.

High Performance in Low Temperature Technology

Full-Featured Cryogenic Temperature Control Made Simple—and Affordable.

Lake Shore's easy-to-use Models 330 and 320 Cryogenic Temperature Controllers provide all the important performance features you need at an economical price. A unique autotuning function automatically determines optimum PID parameters based on system characteristics. Features include:

- Control of temperature from 1.4K to 873K
- Both autotuning and manual PID control
- Control stability to within ± 2.5mK
- Compatible for use with silicon diodes, GaAlAs diodes, platinum resistance thermometers, and thermocouples
- IEEE-488, RS232C interfaces
- Accuracy (system) to within ± 0.03K or better
- Softcal™

For more information, circle the reader response card or call Lake Shore at **614-891-2243**.

Circle number 115 on Reader Service Card

64 E. Walnut St., Westerville, OH 43081 USA (614) 891-2243 Telex: 24-5415 CRYOTRON WTVL Fax: (614) 891-1392 © Lake Shore Cyrotronics, Inc. 1990.

High Performance in Low Temperature Technology.