SUPERCONDUCTING MAGNET SYSTEMS

- Full line of standard magnets
- Custom designs
- Fields to 17 tesla
- ⊕ NMR magnets
- Standard and custom cryostats
- Variable temperature systems
- Low loss refrigerated systems

- Magnet power supplies
- Liquid helium and nitrogen monitors

(615) 482-9551 TELEX 883 945 FAX (615) 483-1253 P.O. BOX 548, OAK RIDGE, TN 37831 USA

Circle number 95 on Reader Service Card

OPTICAL PROPERTIES OF EXCITED STATES IN SOLIDS

A Nato Advanced Study Institute on the physical models, mathematical formalisms and experimental techniques relevant to the optical properties of excited states in solids.

Lecturers: F. Auzel, G. Baldacchini, G. F. Bassani, G. Costa, B. Di Bartolo, G. F. Imbusch, J. Klafter, C. Klingshirn, R. M. McFarlane, J. Reuss, N. Schwentner, B. M. J. Smets, A. M. Stoneham, C. Struck, J. H. van der Waals, and G. Viliani.

Dates: June 16-30, 1991.

Place: Ettore Majorana Centre for Scientific Culture in Erice (Trapani), Italy.

For information write to: Prof. B. Di Bartolo, Department of Physics, Boston College, Chestnut Hill, MA 02167, USA; Tel. (617) 552-3575.

and presenting their results as well as familiarity with the funding system. In some university research programs and industrial labs there are certainly funds available for such positions. However, this is not the case with most universities. Therefore, during the present period of tight funding (one of the reasons for which, ironically, is our own "perestroika" in DOD funding), the government can be looked to for help and leadership in the problem. My proposal is that any principal investigator who already has research funding from any government agency be allowed to submit a very brief addendum proposal to the same agency asking for 50%, but not exceeding a certain amount, of the support (basically, for salary, publications and travel) for an immigrant scientist doing research on the same project under the general supervision of the principal investigator, provided that the immigrant has at least a PhD (or equivalent degree) and appropriate credentials. The rest of the support as well as all the major equipment, space, computer time and so on would be provided by the university. The support would typically be granted for one year, with an extension of one or two more years based on performance and funding availability.

The proposed arrangement would not require a new administrative structure and would secure a proper scientific level of research and proper academic and financial control by the university. Money for this project could be earmarked and allocated among participating agencies in proportion to their funding for fundamental research. This way, the main purposes of the program would be served: It would involve some of the best active researchers in this country, benefit already existing research programs and help to orient the newcomers toward the problems regarded as most significant here. It would also provide them with stateof-the-art equipment, computers and firsthand experience in the organization of research, as well as direct their efforts toward the (mostly) fundamental research in which they seem to be strong.

The current quota for immigration from Russia is some 50 000 each year. Assuming the number of eligible candidates to be around 2% of this amount¹ (with say, about half of those meeting the academic credential requirements) and the average cost per person to be \$55 000–60 000 (including an average salary of \$30 000 a year, fringe benefits and indirect costs), the extra funding would come to \$14–15 million annually. Further-

more, the government could stipulate that the universities waive their indirect-cost charges for the addendum grants (but not for the 50% costs charged to the main grants), which would put the total cost below \$10 million for the first year. Such a national-scale investment with a very short expected period of recovery does not look terribly expensive or risky. A joint effort by our professional societies in lobbying Capitol Hill could secure the necessary funding for such a program.

Lastly, I think it would be appropriate to make the proposed program available not only to Russian emigrés but to any other refugee or immigrant research scientists (such as those from Eastern Europe or China) legally

residing in this country.

At the end of this century this country will be about 9000 short of PhD-level researchers and faculty members in the "hard" sciences and engineering.1 The proposed program could be a significant part of the solution to that problem. A mind is a terrible thing to waste, especially that of an active, accomplished researcher. By helping these professionals to reestablish themselves in this country, we can help ourselves and give American science and industry an extra push to become more vigorous and competitive in this rapidly changing world.

Reference

8/90

1. C. Holden, Science 248, 1068 (1990).

ALEXANDER E. KAPLAN The Johns Hopkins University Baltimore, Maryland

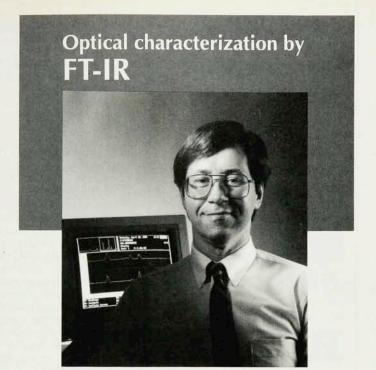
Physics Career Advice—and Dissent

Leon Lederman's column "Low Pay and Long Hours" (January 1990, page 9) is at odds with my experiences and those of my contemporaries. (I got my PhD in 1981.) Lederman's very successful career was built in an era of growth in science funding. The success is atypical; today, growth is an exception.

I have been involved with many technical organizations, including huge corporations, academia, government laboratories and several small technology companies, including a very successful technology startup that was actually engaged in securities fraud. Projects I have been involved in have covered the spectrum from wild successes to dogs with fleas. Herewith is my response to Leder-

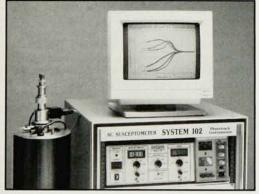
We needed ...

...an FTIR for optical characterization of our new semiconductor materials and heterostructures. But, because of the variety of materials and defects we expect to evaluate, we needed more capability than just photoluminescence.


The new Bomem DA8 provided not only exceptionally high sensitivity and resolution in photoluminescence over a spectral range from the visible to the mid infrared but also capabilities for other spectroscopies such as photoconductivity, impurity and local vibrational absorption spectroscopy, FT-Raman, photoluminescence excitation and photothermal ionization spectroscopy. The DA8 has excellent interface capabilities for our optical and superconducting magnet. It's by far the most flexible and high performance FTIR we have ever seen.

- *Patented automatic dynamic alignment
- *Flexible, multi-purpose, multi-user
- *True vacuum operation
- *Vax host computer
- *Wide spectral and resolution ranges

450 St. Jean-Baptiste, Québec (Québec) Canada G2E 5S5, Tel.: (418) 877-2944, Fax: (418) 877-2834


U.S.A.: 1-800-888-FTIR Europe: 31 3465 62773

Circle number 96 on Reader Service Card

N 30

SUPERCONDUCTOR CHARACTERIZATION

AC Susceptometer System 102

Provides a complete family of curves in one run, high sensitivity with thin film and bulk materials, menu-driven software for accurate & reproducible T_c , transition width and other analyses

- · Self-inductance technique
- Turn-key or modular systems
- Affordable

Phasetrack Instruments

Responsive to your research needs 2251 Park Ave. Santa Clara, CA 95050

(408) 244-3424

Princeton Research Instruments, Inc.

IN-VACUUM MOTION SYSTEMS

PRINCETON RESEARCH INSTRUMENTS

Unique in-vacuum stepper motors and accessories provide rotary or translational motion in high and ultra high vacuum without the use of the more traditional mechanical feedthroughs. Features include:

- Motor operation in vacuum as low as 4 X 10⁻¹⁰ torr.
- Maximum bakeout and operational temperature of 150° C.
- The motors can be placed anywhere, thus allowing compound motions that are otherwise impossible.
- The motors and motorized slides can be quickly and easily relocated to suit experimental needs.
- The motor driver electronic package is specifically designed for in-vacuum motors.
- The system is ideal for control with a remote controller or computer.
- All products are normally in stock for immediate delivery.
- Our engineers are glad to discuss your particular application.

(609) 924-0570

P.O. BOX 1174 PRINCETON, N.J. 08542

Circle number 98 on Reader Service Card

For your Optics Library.

This new Rolyn Catalog provides you with product information covering your needs for off-the-shelf optics. Write or call today for your free copy.

ROLYN OPTICS

706 Arrow Grand Circle • Covina, CA 91722-2199 (818) 915-5707 • (818) 915-5717

Telex: 67-0380 • FAX: (818) 915-1379

Circle number 99 on Reader Service Card

XXII INTERNATIONAL PHYSICS OLYMPIAD

Do you know an exceptional high school physics student?

Then increase their horizons by entering them in competition for a place on the U.S. Physics Team. The United States will enter the top five members of the twenty-member 1991 team in the XXII International Physics Olympiad in July 1991 in Cuba. This nine-day international competition is for pre-university students throughout the world.

If you have an extremely talented physics students in your class contact:

Bernard V. Khoury American Association of Physics Teachers (AAPT) 5112 Berwyn Road College Park, MD 20740 (301)345-4200 man, addressed to the same "Young Undergrad" he wrote to:

Dear Young Undergrad,

The career issues that you so thoughtfully raise are indeed important, but I can't give you the assurances Leon Lederman gave. My advice: If you aren't crazy about science and technology, and very good at it, stay out of it as a career.

Is science good? Why do you think science "actively promotes the wel-fare of humanity"? Is designing a cigarette factory good for people? Suppose you choose your alternate career, as an actuary, and in that role you help keep an insurance company profitable, thereby protecting the assets of retirees. Isn't this "good"? Maybe your real issue here is significance rather than goodness. Science contains the possibility of doing something significant for humanity. But really significant discoveries are very rare, and it's not wise or realistic to bet your career on one, regardless of your level of talent.

Finding support. You have not yet had to find funding. You may think because science is important, there will be funding. This just ain't so. You will have to get financing for your research, regardless of where you work. Managements operate from a financial paradigm, not a technical one; few managers have much understanding of technical issues. The currency of management is schedules and budgets, not scientific merit. Even technical successes are frequently viewed as a credit to management, for "having made technical resources productive." Technically challenging (interesting) projects are usually perceived by managers as dangerous and risky-something to be avoided.

▷ Federal funding. In the last decade, it has become much more difficult for individuals to obtain Federal funding. Government research funds, traditionally allocated by peer review, have often become oriented to big projects and highly politicized: What congressman's district gets the supercomputer center? Scientists are not exempt from these demands: If you see stories in the press about a Federal research area—the achievement of high temperatures in fusion, global warming, first views of the Stealth bomber, a successful "Star Wars" test-you can be pretty sure the funding is up for review.

▷ Industry and finance. In commercial organizations, research has not been in vogue since the 1960s. It is expensive and uncertain, and there are surer ways to make money. To

draw an analogy to architecture: Most architects would probably like to design buildings of originality, beauty and enduring value. Reality is perhaps a shopping mall, where the only language for measuring value is a discounted cash-flow analysis of lease payments. Pitching for funds in industry, you will face one manager after another who will want to know a little about your ideas and a lot about your costs, schedules and returns—the last being the only acceptable criterion for funding decisions.

It is seldom understood by scientists that the financial community values technological prowess primarily because it can enhance the perceived value (price) of securities. The appearance of prowess does the trick, since most stock analysts and buyers aren't technically trained. How many Nobelists sit on the boards of startup companies? I promise you the prospectuses of such companies (written by investment bankers) mention these affiliations prominently. At a Fortune 500 company where I worked, less than a week after an expensive ion implanter arrived, the company photographer arrived to take pictures for the annual report. Five years later the machine had barely been used-this just wasn't where the emphasis was.

One businessman I know commented that in the world of finance, the function of PhDs is to "speak when spoken to." In commerce, the value of a scientific degree is often unrelated to science: It serves as a credible endorsement of financial transactions, be they stock sales or R&D allocations. Research has a role that is inevitably secondary to this marketing function. Is posturing for Wall Street what you had in mind for a science career?

Drawbacks to a technical career. There are significant rewards that go with technical careers-intellectual stimulation, the company of welleducated people, the parade of nature's marvels, the limousines and groupies. There are also big drawbacks. The training is as long and difficult as that for medicine or law, without yielding the financial and professional status attendant to those fields. I have twice been offered the "opportunity" to work without pay; I have been told on three interviews that "the only way we can hire you is if you have your own funding." This is tantamount to paying for the privilege of working, since employers usually charge overhead to research contracts. In short, you will have to save your efforts for funded activities or the search for them: This should not

be confused with scientific research.

Further, in organizations where work is supported by outside contracts (common in engineering and research), the professional staff lives from contract to contract. Layoffs are the remedy of choice when these expire. Success in business will give you money; in science, you get to keep your job for another year (unless someone annexes your funding first). Secretaries and bureaucrats, who charge to overhead, actually have more secure jobs (and didn't endure grad school to get them). Lederman cites contact with professional colleagues, but this costs travel moneyby now you should know what that means. In one lab, management sent the scientific staff a fiat that actually said "the only acceptable reason for requesting conference travel is if attendance will attract funding"; specifically excluded were "the scientist has a paper to present" or "the scientist wants to go.'

In many creative fields, such as music or acting, there are established channels, like residuals, that pass some of the income to the artist. Not so in technology: Financial rights inevitably accrue to the organization

and not the individual. Your scientific reputation depends on the quality of your ideas. But idea theft occurs in all scientific fields. There are no laws against stealing ideas unless there is clear financial damage. Time and again I have seen unscrupulous office politicians strip inventors of credit for their work. Few organizations have any means of adjudicating scientific ownership. (If there's no court, there are no crimes.)

If you're still with me, Young Undergrad, please note that all fields of endeavor have their drawbacks; I have tried to warn you of the problems with technical careers. Science really isn't different from any other human activity. It isn't better for mankind; the timeless failings of greed, ego, incompetence and folly are very much a part of the technical milieu. The only valid reason for going into it is if you enjoy it enough to outweigh the negatives.

NAME WITHHELD BY REQUEST

In a way, Leon Lederman must have led a very sheltered life. Perhaps professional success and prominence have blinded him to the restriction of opportunities that life offers to other scientists and engineers.

In his Reference Frame column "Low Pay and Long Hours" Lederman states, "Today any trained scientist or engineer who is average (B) is assured employment at reasonable

Apply Silicon Diodes with Greater Accuracy than **Ever Before**

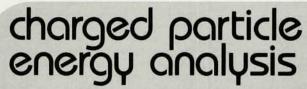
Are your diodes really accurate?

Unfortunately, and to the surprise of many, most commercial, componentgrade silicon diode sensor packages generate "self-heating errors" as sizable as 1 kelvin or more at low temperatures. Poor thermal design of the sensor package and connected leads is the primary problem.

The unique hermetic package of Lake Shore's DT-470 series silicon diodes incorporates a sapphire substrate for high electrical isolation and good thermal conductivity, virtually eliminating measurement errors commonly

encountered at low temperatures.

DT-470 series diodes are interchangeable, accurate, and repeatable in 6 tolerance bands. For more information on "Self Heating Effects" in silicon diodes, ask for our comprehensive, 60 page Temperature Sensor Guide by circling the reader response card in this magazine.



Telex: 24-5415 CRYOTRON WTVL Fax: (614) 891-1392 C Lake Shore Cryotronics, Inc. 1990

High Performance in Low Temperature Technology.

MRS Show - Booths #701, 702

Circle number 100 on Reader Service Card

The Comstock System III Electrostatic Energy Analysis System includes Double Focusing Electrostatic Energy Analyzer, Dual Channelplate Detector, Einzel Lens, Analyzer Power Supply and Electrostatic and Magnetic Shield and Mounting Boxes. All the major components you need for a state-of-the-art Electrostatic Energy Analysis System.

comstock

1005 ALVIN WEINBERG DRIVE OAK RIDGE, TN 37830 USA
TEL: 615-483-7690 FAX: 615-481-3884
West Germany: Heribert Lehner GmbH Weimersdorf 04192/5007-0
Japan: Science Laboratories, Inc. Tokyo 03-813-2771

CENTENNIAL CELEBRATION

DEPARTMENT OF PHYSICS

University of Illinois at Urbana-Champaign

Distinguished Colloquium Speakers Include:

Lew Allen, Jr.
John N. Bahcall
Erich Bloch
Murray Gell-Mann
John J. Hopfield
Leo P. Kadanoff
Walter E. Massey
Arkady B. Migdal
Norman F. Ramsey, Jr.
Robert C. Richardson
Vera C. Rubin
J. Robert Schrieffer
Roy F. Schwitters
Frederick Seitz
Rosalyn Yalow

For Information, Contact:

Department of Physics Loomis Laboratory of Physics 1110 West Green Street Urbana, Illinois 61801

Telephone: 217/333-3761 Telefax: 217/333-9819

BITNet: Phys100@UIUC.VMD

INTERNet:

Phys100@VMD.CSO.UIUC.EDU

1890-1990

A CENTURY OF SERVICE to the University, the State, and the Nation wages." This is plain out not the case, and in making such an inaccurate statement in the context of his letter to an anonymous "Young Undergrad," Lederman has presented career information for students that will undoubtedly be taken as authoritative but is potentially seriously misleading.

Employment at reasonable wages is not assured to anyone in the contemporary American market economy, and unemployment or underemployment is a fact of life for many scientists and engineers.

Furthermore, scientists and engineers are a heterogeneous bunch, and unemployment hits some groups harder than others. Aeronautical engineering is famous for its boom-andbust cycles, with engineers earning great salaries one year and finding themselves out on the street the next. And where are all those terrific highpaying jobs for geologists, geophysicists and petroleum engineers that we heard about a few years ago? What happened to the demand for reactor engineers and reactor physicists? Many corporations are downsizing, and right now defense electronics, for example, is not a very comfortable place to be. Another, related example in physics is that the weapons laboratories are not in the exuberant hiring mode they have been in on occasion in the past.

Being one of only a few individuals in a particular research field can also lead to employment problems if you want to remain in your field of specialization: Even if you are an outstanding student, you can still be in trouble when it comes to job hunting if there isn't a coincidence in time between an opening in one of the very limited number of positions in your field and the time interval during which you are conducting your job search (as a superbly qualified young physicist of my acquaintance found out to his dismay last year). So even if you are a top-notch student, you can make the mistake of picking the "wrong" field and find it hard to get a job doing anything like what you want to do. Other factors can play a role too: If you aspire to a career in science but were born female, you will find yourself up against the fact that you are job hunting as a member of a group characterized by a higher unemployment rate. The unemployment rates of women doctoral scientists and engineers, for example, are two to five times those of men in the same field.1

As Americans, we live and work in a society in which employment is not an entitlement. A student doesn't earn a job by getting good grades, and even if he or she finds a position in science or engineering, it will not necessarily be well paid, at least in comparison with jobs in some other fields that are more highly regarded and more highly valued in our society.

As a physicist, I personally enjoy science immensely, and I would encourage any student who shares my enthusiasm to go all out for a career in science or engineering. But it's not all a bed of roses. For a distinguished physicist like Lederman to write that today any average trained scientist or engineer is assured employment at reasonable wages is in my opinion irresponsible and a disservice to students who may read his letter to the Young Undergrad and believe it.

Reference

 B. Vetter, in Contributions to the GASAT-5 Fifth International Gender and Science and Technology Conference, vol.
 I. Ravina, Y. Rom, eds., Technion— Israel Institute of Technology, Haifa (1989), p. 5.

> CAROLINE L. HERZENBERG Argonne National Laboratory Argonne, Illinois

1/90

The exchange of letters between Leon Lederman and a "Young Undergrad" touched on problems that are rather painful for any scientist.

"Why should we bother to pursue careers in science?" asked the Young Undergrad. Certainly we remember times when physics was in fashion owing to the sensational promises of nuclear energy and spaceflight. However, I believe most undergraduate physics majors come to study science, not for a career. Curiosity and the desire for a permanent feeling of being in touch with mystery are the main stimuli for students, and only those who are able to maintain these all their lives have made the right choice.

Why do we feel that it is physics that we must pursue? I belong to the generation of Soviet physicists who graduated about 15 years ago. Some of us could not get places at the universities or Soviet Academy institutes because we were of Jewish origin or held dissident views. What forced us to engage in physics secretly while at our workplaces, and on evenings and weekends? (Certainly the theoreticians did this.) Recently some of this group emigrated to the US. What forced many of them to start from the postgraduate level, even though they might become applied programmers and have no financial problems? Do we explain why we love a certain woman? No, we

Now it's easy to choose a chopper. The SR540 Optical Chopper from SRS costs only \$995 but has features you'd expect on a chopper selling for twice as much. It's simply a better chopper for less money . . . just what you've come to expect from Stanford Research Systems.

Spectroscopy Instruments

Rudolf-Diesel-Str.7A

D-8031 Gilching

Ph: 0 8105/5011

FAX: 0 8105/5577

Optilas

c.e.1422

91019 Evry Cedex

Ph: 60.79.59.00

FAX: 64.97.17.36

STANFORD RESEARCH SYSTEMS

Tokyo Instruments

Asahi-Seimei Bldg.

Edogawa-ku, Tokyo 134

Rockdale Stree

Worcester, MA 01606 U.S.A. Telephone: (508) 852-3674 / 853-3232

Code Name: "WALKER SCI"

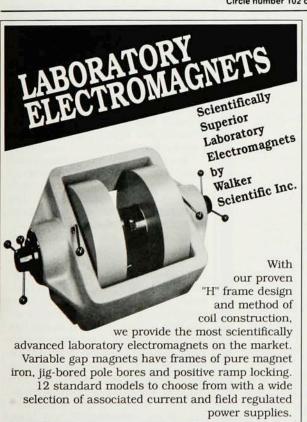
6-8-10 Nishikasai

Ph: 03 686 4711

FAX: #6860831

- 4 Hz to 4 kHz Chopping Frequency
- Four Digit LED Frequency Display
- Detachable Base allows post mounting
- Synthesized reference output up to 20 kHz
- Dual-beam capability standard
- Comes with two stainless steel blades
- 0.5° Phase Jitter
- 100/120/220/240 Volt, 50/60 Hz Operation

1290 D Reamwood Avenue, Sunnyvale, CA 94089, Telex 706891 SRS UD, FAX 4087449049, TEL (408) 744-9040 FRANCE GERMANY


JAPAN

Seki and Company 16-16 Nihonbashi Koamicho Chuo-ku, Tokyo 103 Ph: 03(669) 4121 FAX: 3(668)3436

UNITED KINGDOM Lambda Photometrics Lambda House, Batford Mill Harpenden, Herts AL5 5BZ Ph: 05827/64334 FAX: 05827/12084

Speirs and Robertson Moliver House Oakley Road Bromham, Bedford Ph: 02302/3410 Fax: 02302/5347

Circle number 102 on Reader Service Card

SCIENTIFIC INC. Telex: 9102508517 / FAX (508) 856-9931

ZERO GAUSS CHAMBERS

Send for ZG-2 catalog.

Circle number 104 on Reader Service Card

New from Taylor & Francis!

INTRODUCTORY SOLID STATE PHYSICS

H. P. Myers, Chalmers Technical University, Gothenburg, Sweden

This comprehensive new textbook provides a thorough and concise introduction to solid state physics for college students. Throughout its 15 chapters, the text combines logical progression of arguments with extremely clear explanations of fundamental concepts, presenting an ideal framework in which to develop a firm understanding of the properties of solids and liquids. SI units are used and numerous problems and answers are included, designed to test and improve the student's grasp of the ideas in each chapter.

1990 • 546pp • Hardcover ISBN 0-85066-759-3 \$70 Paperback ISBN 0-85066-761-5 \$36

METAL-INSULATOR TRANSITIONS 2nd Edition

Sir Nevill Mott FRS

This new edition of Professor Mott's classic text has been extensively revised. Since the first publication in 1974, understanding of certain types of transition has been completely transformed by, for example, developments in scaling theory and the theory of interactions between electroms. The discovery of high-temperature superconductors has prompted growing interest in crystalline conductors, particularly the transitional-metal oxides. Substantial rewriting and addition of new material combine to make this book an original, authoritative and up-to-date review of the field by one of its most knowledgeable and respected pioneers.

1990 • 280pp • Hardcover ISBN 0-85066-783-6 \$78

To Order Call Toll Free: 1-800-821-8312

Taylor & Francis • 1900 Frost Road, Suite 101 • Bristol, PA 19007-1598

seek meetings with her.

Well, once we have declared love, two problems arise immediately: reward and jealousy. I think the Young Undergrad's questions are connected with just these companions of our feeling.

"Why should I bother to work hard?" the Young Undergrad asked.

"You have to give 100% of what you've got. If you give less, you have no talent." This challenge posed by the artist Marc Chagall may be the best answer. But the sense of the question is, "Why do others work less and get the same or even greater rewards?"

What is the real reward for a person? How far can we move if our motivation is jealousy of others? These problems don't exist for scientists alone. Sport, business,... any mode of self-expression evokes such problems. We know scholars who are sincerely happy every time they have a note published. Nevertheless, the biographies of many prominent scientists convince us that your most severe judge may be yourself.

So, dear Young Undergrad, if such "damned questions" appear in your mind, they will worry you all your life. Be courageous and don't hope that routine business (you mentioned becoming an actuary) will save you. Frankly speaking, sometimes I want to remain a database manager only (my official job is connected with such duties). Nevertheless I always remember a parable:

A sinner died and went to Hell. He was surprised to find himself in a splendid apartment. He got a delicious supper. Then he spent the night with a nice woman.

"Is this really Hell?" the sinner asked a servant the next morning.

"Yes, sir. You will live here eternally—in this apartment, with the same supper as last night, the same woman and me" was the answer.

ANATOLY B. SCHMIDT 5/90 Riga, USSR

LEDERMAN REPLIES: Name Withheld's lengthy advice has lots of relevant detail, and I have very little quarrel with most of this except for the tone of aggrievement at the fact that the world is a far from perfect place. Yes, business puts profits above support of pure science; yes, someone may steal your ideas; yes, the cultural norm of modern America is far from what we would like; yes, not all technological work benefits mankind. So what's new?

This shy respondent insists on adding the small print to my somewhat romantic pitch. Long before Galileo's

LETTERS

difficulties, scientists were embroiled (in the case of Giordano Bruno, literally!) in real-world brouhaha. As professionals, scientists are given very little absolution from the earthly burdens that bankers, lawyers, policemen and schoolteachers carry. My point was simple: "To thine own self be true." That is, find out what it is that turns you on, and if it's science, go for it! But by all means don't send money until you read the prospectus.

Caroline Herzenberg complains about the accuracy of my assertion that "today any trained scientist or engineer who is average (B) is assured employment at reasonable wages." Let's see where I get this: In the NSF's Science and Engineering Indicators— 1989 we read: "Science employment [in the science and engineering work force] nearly doubled [in the 1980-88 period]; employment of engineers increased by 75 percent. Overall S/E work force grew by 7.8 percent per year during this period. In comparison total US employment increased by only 1.8 percent per year."

Then later: "In 1980 the unemployment rates for scientists and engineers were 1.6 percent and 1.0 percent, respectively, compared to 2.5 percent for all technical and professional workers and 7.1 percent for the

entire US work force.'

The number of scientists and engineers employed in jobs outside science and engineering is admittedly more significant. We'd need more data to know how much of this is voluntarymore money, more socially redeeming and so on-but in any case I don't believe it is a big factor.

Still later in the Indicators we see: "The experience of recent S/E graduates is another indicator of the degree of market balance. In general, the demand for scientists and engineers is greater than the supply at existing salary levels, and the proportions of recent graduates who obtain jobs in science or engineering will be rela-

tively high." I have also been impressed by the projections, most recently summarized by Richard Atkinson in Science.1 The NSF, using economic data from the Bureau of Labor Statistics, estimates the supply-demand ratio based on plausible indicators, retirements and demographics. These analyses concentrate on PhDs and project an annual shortfall of 7500 PhDs per year in the first decade of the 21st century. Although these projections may have errors, they simply use present activity as a base. Clearly, transients such as the welcome conversion of military to civilian R&D will be present. I

personally believe the shortages are vastly underestimated because they do not include the tremendous scientific and technical burden of three major global problems: the need for environmental improvement, materials shortages and the north-south gap between the hemispheres in standard of living. How can we reverse the ecological degradation of the planet; design around the shortages of such materials as oil, high-grade iron ores, vanadium and cobalt; and raise the quality of life for the impoverished 70-80% of the world's population without further environmental degradation?

Summarizing, I believe there are reasonable data to support the sense of optimism that triggered Herzenberg's ire. However, the preferential unemployment that she asserts women suffer doesn't show up in my dry numbers and is, if real, not only intolerable but stupid.

MULTIPLE ANODE

MICROCHANNEL PLATE PHOTOMULTIPLIER TUBES

ITT produces a wide range of multiple anode microchannel plate photomultiplier tubes offering multiple discrete parallel channels of photodetection in one tube. A variety of anode patterns are available to match optical image plane requirements; for example:

ANODE PATTERN

Concentric Rings of equal area 10x10 Array Segments and Sectors Comb Wedge and Strip

TYPICAL APPLICATION

Fabry-Perot Interferometry Wavefront analysis Pattern Recognition Spectrometry Photon Detection: Centroiding

... and of course, if you have a special application, ITT can design new patterns specifically for you.

Tubes are available in photocathode diameters of 18, 25 and 40mm with a wide selection of input windows and photocathodes including GaAs, covering all wavelengths from UV / solar-blind through the visible

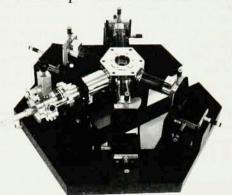
spectrum to near-IR. Gateable versions for range gating and background reduction, high gain versions for photon counting, and fast response time versions for pulse detection are also available. All these tubes are insensitive to strong magnetic fields.

Contact us today about your special application for multiple anode microchannel plate photomultiplier tubes.

(ITT also has a broad line of standard tubes and video cameras; ask for our catalogs.)

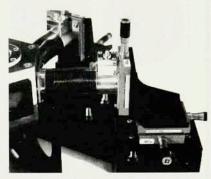
A Unit of ITT Defense

ITT ELECTRO-OPTICAL PRODUCTS DIVISION


Tube and Sensor Laboratories P. O. Box 3700 • Ft. Wayne, IN 46801 Phone: 219-423-4341 • FAX: 219-423-4346 • Telex: 23-24-29

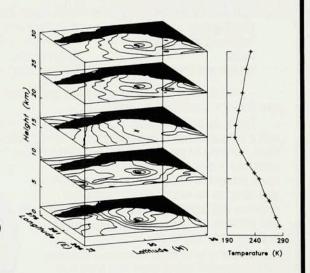
Circle number 106 on Reader Service Card

RMC-Cryosystems announces *state-of-the-art* micromanipulator systems featuring *in-situ* positioning of electrical probes for measurements from 4 to 500 K.


- Frequencies from dc to several GHz
- Contacts can be moved up to 1 in. (25 mm) in x and y directions
- · Holds 2 in. (50 mm) wafers
- Systems for larger wafers are available
- Accommodates a microscope to aid in positioning of contacts on the sample

- · Holds up to 6 probes
- Uses continuous-transfer refrigeration to achieve low cryogen consumption
- · Optical access above and below sample
- · Fast turn-around of samples

23 years supporting the cryogenic community.


RMC

4400 South Santa Rita Avenue Tucson, AZ 85714 602-889-7900 FAX 602-741-2200

Circle number 107 on Reader Service Card

Can your PC do this?

It can if you have PLOT88, unrivaled C & FORTRAN graphics library for today's physicists

Call (619) 457-5090 today PLOTWORKS, Inc.

Dept. P-20, 16440 Eagles Crest Rd., Ramona, CA 92065 U.S.A., Fax (619) 789-4923

Circle number 108 on Reader Service Card

Anatoly Schmidt gives us an interesting and poetic glimpse of the life of a Soviet physicist and says it all much better than I did. It is heartwarming to encounter a PHYSICS TODAY letter on my side!

Having said all this, I would like to agree with the respondents on one important issue, and that has to do with the current health of the academic science enterprise. There is no question that science in our universities is in very poor shape and that this can be traced to an underinvestment by the Federal government in basic and applied research. If not soon reversed, this policy could have devastating consequences for science in the US. I believe solving this problem requires concerted political action on the part of (older!) scientists. A continuation of this academic malaise will certainly make the life of science less appealing. However, I made my own decision to go into science during the Great Depression, when, to first order, there was 100% unemployment. I would have given the same "advice to an undergraduate" then as I did in January.

Reference

1. R. Atkinson, Science 248, 425 (1990).

LEON M. LEDERMAN University of Chicago Chicago, Illinois

8/90

Mitogenetic Radiation: Pathology, or Biology?

The inclusion of "mitogenetic radiation" as an example of "pathological science" in Irving Langmuir's 1953 talk on that topic (October 1989, page 36) may or may not have been appropriate at the time he delivered his speech. The references cited by Robert Hall, who edited the talk for publication, are quite old. Several more modern citations should bring Hall up to date on mitogenetic radiation.¹

The gist of these articles is that many cell systems emit ultraviolet light during or immediately before cell division and that the total effect of this emission on neighboring cells is still not known. The 1985 article has many recent references on mitogenetic radiation in yeast cell strains. Giuseppe Cilento has written an excellent overview of ultraweak bioluminescence.²

References

T. I. Quickenden, S. S. Que Hee, Biochem. Biophys. Res. Commun. 60, 764 (1974); Photochem. Photobiol. 23, 201 (1976); Radiat. Res. 46, 28 (1971). T.I.