
TURBULENCE: CHALLENGES
FOR THEORY AND EXPERIMENT

High-Reynolds-number flows are ubiquitous.
Although many aspects of such flows have been understood
phenomenologically, a systematic theory of their detailed
properties requires novel experiments.

Uriel Frisch and Steven A. Orszag

Research in macroscopic classical physics, such as fluid
dynamics or aspects of condensed matter physics, contin-
ues to confront baffling challenges that are by no means
less demanding than those at the post-Newtonian fron-
tiers of physics that have been explored since the
beginning of this century. This is so even though the basic
equations of macroscopic classical physics are known—
indeed, have been known for centuries in many cases.
Chaos and nonlinear dynamics are examples of the topics
that pose new challenges to our understanding of macro-
scopic classical systems. Turbulence, a phenomenon
related to but distinct from chaos, and having strong roots
in engineering, has been increasingly in the focus of
physics research in recent years.

Turbulence occurs in a very wide variety of flows,
ranging from the mixing of cream in a coffee cup to the dis-
persal of pollutants in the atmosphere, from the formation
of galaxies in the early universe to thermal convection in
stars, from flows around automobiles, ships and aircraft to
combusting flows in turbomachinery. Although there is
no unique mathematical model that encompasses all these
situations, it is generally recognized that a prototypical
case is that of turbulence in an incompressible fluid where
the additional complexities due to sound waves, chemical
reactions and so on are avoided. We shall concentrate on
that prototype in this article.

For incompressible flow, the fundamental dynamical
equations are the Navier-Stokes equations:

dt
—
p0

V - v =

(1)

(2)
where v(x,f) and p(x,t) are the fluid velocity and pressure,
respectively, at point x and time t; p0 is the (constant)

density; and vmol is the kinematic molecular viscosity.
This system of coupled partial differential equations must
be supplemented by initial and boundary conditions. That
the fluid velocity should vanish at a rigid wall is an
example of a boundary condition.

It is customary to classify turbulent flows in terms of
the so-called Reynolds number, which is a nondimensional
measure of the nonlinearity in equation 1 and is defined as
R = UL/vmol, where U is a typical velocity and L is a
typical length scale. If the Reynolds number is not too
large, the flow will be laminar, in the sense that it will dis-
play regular and predictable variations in both space and
time. As the Reynolds number increases, flows typically
undergo a sequence of instabilities until, at some large
enough value of the Reynolds number, they become fully
turbulent. In this article, we concentrate on the problem
of very-high-Reynolds-number turbulence. High R values
tend to characterize real-life problems, because most fluids
have vmo| ~ 10~2 — 10"' cm2/sec, while most flows typical-
ly have velocities that are much larger than 1 cm/sec and
occur on length scales much larger then 1 cm.

The characteristic of high-Reynolds-number flows
that makes their study so difficult is the huge number of
dynamically significant scales of motion. The scales vary
from the large ones at which turbulent energy is input to
small ones where dissipation into heat is effected. Indeed,
as we discuss in the next section, the number of active
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Richardson cascade, in which "big whirls have little whirls which feed on [the big whirls'] velocity,"4

visualized using the wavelet transform. Panel a shows the time dependence of the fluid velocity at a point in a
fully turbulent fluid (top) and the corresponding wavelet transform (bottom). The amplitude of the wavelet
transform is color coded: For a given value of the scale parameter a, which is a measure of the "filter width"
applied to the data, the transform amplitude is negative or zero in black regions and large and positive in red
regions. The parameter a decreases by a factor of 200 from bottom to top. In b the data near the arrow in a
are shown with the time and scale magnified by 20, and in c there has been a further 20-fold magnification
near the arrow in b. Under the conditions of the experiment, the time variation of the velocity is equivalent to
its spatial variation, so the successive forkings seen in the lower panels as the scale parameter a is varied are
suggestive of a fractal branching in the Richardson cascade. (Courtesy of Emanuel Bacry, Cilles Crasseau, Alain
Arneodo, Centre de Recherche Paul Pascal, Talence, France.6 The data were obtained at the Modane, France,
SI wind tunnel). Figure 1

degrees of freedom in a turbulent flow is of order Rn'4 per
unit volume L:). Therefore at a Reynolds number of 108

(which is modest by geophysical standards), there are on
the order of 10lH active degrees of freedom per L:i. This
enormous complexity is compounded by the absence of a
distinct separation between scales, in the sense that
turbulent flows exhibit excitations from their largest
scales down to the smallest.

There is no consensus on what will constitute a
"solution" to the turbulence problem. On the one hand,
engineers are mostly interested in mean (average) proper-
ties of these random flows, such as mean velocity profiles,
mean wall stresses and mean pressure gradients. On the
other hand, from a basic physical point of view, it is
important that we understand the nonlinear physical
processes responsible for those mean properties as well as
the details of motions across the broad range of excited
scales. For example, in tornadoes it is necessary to
understand the details of locally intense circulations. But
such an understanding may not be possible to achieve
using traditional statistical turbulence theory, which
regards the space and time dependence of, say, the velocity
as a random field and deals only with its average
properties.

In this article, we survey some of the key ideas about

turbulent flows that have evolved over the last century,
and we shall describe some of the challenges for the
present and future (see reference 1 for background and
further details). As we shall see, there have been
substantial advances in our understanding and we are
now capable of making significant and reliable predictions
of various characteristics of turbulent flows. Yet funda-
mental challenges remain for both theory and experiment
that will require new, and probably quite novel, ideas for
their solution. We believe that the effective interplay
among theory, computation and experiment is the key to
clarifying the physics of turbulence.

Four basic concepts
Randomness, eddy viscosity, cascade and scaling are four
of the basic concepts that are at the root of early attempts
to understand turbulence.

Randomness. Turbulent flows usually appear ex-
tremely complex and unpredictable. In the late 19th
century, Osborne Reynolds suggested that such flows
might best be described in terms of their average, rather
than their detailed, properties. The further development
of this idea led to the statistical theory of turbulence.

Turbulent flows become random, according to the
classical explanation, because instabilities intrinsic to the
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flow amplify the fluctuations in, say, the forces acting on
the flow, the conditions at the boundary, the thermal noise
and so on. The idea that sensitive dependence on initial
data might give rise to chaotic behavior was already
familiar to Henri Poincare nearly a century ago.2 There
has been much research in recent years on how purely
deterministic and causal systems can have chaotic solu-
tions, and we now have a mathematical understanding of
how minute inaccuracies in the initial conditions can
make a flow unpredictable in the distant future.

For many years it was thought that a picture proposed
by Lev Landau was generic for turbulent flows. According
to that picture, a flow would undergo an infinite sequence
of bifurcations (instabilities) before it became unpredicta-
ble and chaotic. For chaotic behavior in dynamical
systems, however, we know, since the seminal work of
David Ruelle and Floris Takens, that such behavior can
arise after only a finite number of bifurcations.

From a practical point of view, the impact of the
modern theory of dynamical systems has been greatest in
problems in which there is only temporal chaos and the di-
mension of the attractor is not too large (of order 10 or
less). (An attractor is the set of points in phase space that
the system approaches at large times.) With higher-
dimension attractors, it is extremely difficult both to
measure the attractor dimension and to use the concepts
of dynamical systems theory to make predictions. How-
ever, semi-empirical methods have been used to study
dynamical systems with moderately many (of order 102)
degrees of freedom and to model aspects of turbulence

close to walls.' More generally, though, high-Reynolds-
number flows are believed to have attractors with large
dimensions, and it seems probable that present dynamical
systems concepts may have to be extended significantly
before we can predict the properties of turbulent flows.

Eddy viscosity. Turbulent flows are both strongly
constrained and dominated by other, perhaps considerably
simpler, phenomena. Indeed, many important features of
turbulence dynamics can be described in terms of eddy
viscosity, a concept introduced over a century ago by
Joseph Boussinesq and developed later by Geoffrey Taylor
and Ludwig Prandtl.

The concept is based on an analogy with statistical
mechanics. By the late 19th century, it was understood,
through the work of Maxwell, Boltzmann and others, that
molecular motion has macroscopic consequences. The
existence of transport coefficients, which relate the
transport, or flux, of some quantity such as heat to the gra-
dient of the mean value of that quantity, is an example of
the macroscopic manifestation of molecular motion. The
work of Sydney Chapman, David Enskog and others
showed that when there is a separation of scale between
molecular motions (which typically are characterized by
the mean free path) and hydrodynamic motions (which
typically occur on macroscopic scales), the principal effect
of the molecular motions on the large hydrodynamic
scales is to cause the dynamics to be diffusive. An example
is momentum diffusion, which smooths velocity gradients
on the hydrodynamic scales. Transport coefficients such
as vmol are typically on the order of the velocity of thermal

Energy spectrum of fully
developed turbulence,

revealing the Kolmogorov-
Obukhov k~ 5'3 law as a
plateau. E(k) is a suitably

rescaled energy spectrum, k is
the wavenumber and /,/ is the
Kolmogorov dissipation scale.

The eight sets of data points
are from different experimental

samples. (Adapted from
ref. 9.) Figure 2
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Stationary turbulent flow over a step for a Reynolds number R of 40 000. The step (black)
extends infinitely to the left. The flow was calculated using the renormalization group ideas
developed in reference 12. The curves are mean flow streamlines, while color indicates
turbulence intensity. (In a stationary turbulent flow the mean properties are time
independent.) The calculation used no ad hoc parameters or experimental input and is a
prototypical example of the successful use of theory and robust computer codes to make
predictions of large-scale turbulent flows in complicated geometries. Such predictions are
needed in engineering design. The small vortices to the immediate right of the step have
been observed experimentally. (Courtesy of George Karniadakis, Princeton University, and
Alexander Yakhot, Ben-Curion University.) Figure 3

molecular motion multiplied by the mean free path.
Prandtl had the inspired idea that turbulent dynam-

ics might be regarded in an analogous way to molecular
motion, in the sense that small-scale eddies could be
thought to act on large-scale eddies in a diffusive manner.
He argued that the appropriate diffusion coefficient,
called the eddy viscosity, would be on the order of the root-
mean-square value vrms of the fluctuating velocity times a
length scale /, called the mixing length. The eddy viscosity
veddy is then responsible for smoothing gradients in the
mean velocity.

The ratio veddy/vmol~vrmsl/vmol=R, so that the
molecular diffusion rate is enhanced by a factor on the
order of the Reynolds number to give the eddy diffusion
rate in a turbulent flow. As a consequence, the transport
of momentum, heat, particles and so on is enhanced in
turbulent flows. The enhancement of, for example,
momentum transport implies that velocity gradients are
smoothed out much more rapidly in a turbulent flow than
in a laminar flow. Similarly, particles or some similar
passive scalar contaminant such as a droplet of a dye
introduced into a turbulent flow will diffuse at rates that
may be orders of magnitude larger than molecular rates.
Indeed, Taylor in 1915 observed markedly enhanced
transfer rates in turbulent flows, which he was able to
explain in terms of eddy diffusion coefficients.

The enhanced momentum transport in turbulence
also leads to enhanced kinetic energy dissipation. Eddy
viscosity ideas are useful in describing this effect. The
local rate of viscous dissipation of energy per unit mass in
an incompressible flow is given, on average, by
£" = vmo| | Vv|2. To evaluate this formula properly, it is
necessary to estimate accurately |Vv|, which, as we shall
see below, is dominated by the very smallest scales of
turbulent motion. If, however, the details of the small-
scale motions are not observable, as for flows on distant
planets, or are not available, as would be the case if an ex-
periment recorded only the mean velocity, the use of an
eddy viscosity together with estimates of |Vv| on the
largest scales of motion allows us to get a good estimate of
the average dissipation rate. If we consider v on a typical
scale of an energetic eddying motion, then | Vvj is of order
!)rm! /L, where L is the scale of the eddying motion. But

dissipation on these scales occurs through the eddy
viscosity veddy ~ vrms L. So we may estimate the local rate
of energy dissipation as # ~vrr^sL(vrms/L')2~v^ms/L. Ob-
serve that the molecular viscosity does not appear in this
estimate of S. Such estimates of the local rate of energy
dissipation in turbulence, and their approximate indepen-
dence of the molecular viscosity, are reasonably well
supported by experiment and computer simulations. Our
estimate for £ can be reinterpreted if we rewrite it as
&~vTn,s/<'L/vl.rns). Thus the energetic eddying motions,
which have kinetic energy per unit mass of order v^ms, are
dissipated in a time L/vrms, which is the time it takes for
an eddy of size L with typical velocity i>rms to flip over.

Ideas about viscosity can be systematically justified
only when there is motion on widely separated scales,
whereas in turbulent flows it is generally believed that the
dominant interactions are between contiguous, rather
than widely separated, scales. So it is at first somewhat
surprising that the idea of eddy viscosity turns out to be so
useful. Amazingly, however, eddy viscosity concepts
underlie the entire range of models for turbulence, from
engineering approximations to the most sophisticated
analytical theories. Many of these models and theories
can be viewed in terms of generalized eddy viscosity
coefficients that may be nonlocal in space and time. (See
the section below on statistical theories.)

Cascade. The notion that turbulent flows are hierar-
chical and involve entities, usually loosely referred to as
eddies, of varying sizes is a common idea that has been cap-
tured by artists over the centuries, most notably Leonardo
da Vinci. This common notion underlies the concept of
cascade, the third key element of turbulence theory. The
modern concept of cascade probably owes its origins to
Lewis Richardson,4 who took inspiration from observa-
tions of clouds and from Jonathan Swift's verse5:

So, nat'ralists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller yet to bite 'em,
And so proceed ad infinitum.

In Richardson's hierarchical model of turbulence, the
largest eddies are produced by the forces driving the flow.
The large eddies are unstable and produce eddies of a
somewhat smaller size, which themselves become unstable
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and generate eddies of even smaller size. This process
continues until eventually molecular viscosity is able to
suppress further cascading (see figure 1). Richardson's
qualitative picture of turbulent flows has dominated the
thinking among fluid mechanics experimenters and theo-
rists for over half a century.

Scaling. The hydrodynamic equations retain the
basic invariance and conservation principles of mechanics.
In fact, the equations represent the fundamental physical
laws of conservation of mass, momentum and energy, and
they maintain the basic symmetries of Newtonian physics,
including translation, rotation and Galilean invariance.
The corresponding symmetries of the macroscopic equa-
tions have interesting consequences, which will not be
fully discussed here. Rather, we will focus on scale
invariance, a remarkable new symmetry that emerges
macroscopically in the limit of infinite Reynolds number
and which is the basis of Andrei Kolmogorov's scaling
theory.

Indeed, if we ignore viscosity, the basic incompressible
Navier-Stokes equations are invariant if we simulta-
neously scale the distance by A, velocity by A1', and time by
A' '', where h is an arbitrary scaling exponent. Kolmo-
gorov's 1941 theory of scaling in turbulence7 rests on three
assumptions. First, the scale invariance of the zero-
viscosity Navier-Stokes equations is assumed to hold in
the statistical sense—that is, average quantities are
assumed to be scale invariant, whereas detailed structures
need not be. Second, a finite flux of energy 6~ is assumed
to flow from large scales, where the turbulence is
produced, to small scales, where it is dissipated, in the
limit of R tending to infinity. Third, the energy flux 6',
through scale / is assumed to depend only on flow
quantities local to the scale I, in particular on / and the ve-
locity v, of eddies of size /. Therefore, since 6', has the di-
mensions of energy per unit mass per unit time, dimen-
sional analysis gives &, ~v3,/l, from which it follows that
% scales as A3h 1. Then scale invariance of 6 implies
that h = %.

Several immediate consequences of Kolmogorov's
1941 theory are:
> v, ~tfl/3l1'3, where i? = i<f, also equals the rate of
viscous dissipation of energy per unit mass. Thus
Vu, ;= irf1/3 I ~ 2/3 isdominated by small scales and would be
infinite if the cascading were not cut off at some suitably
chosen small scale.8
> The structure function of order p, defined as the
average of the pth power of velocity increments Svt
measured over distances I, scales as (Sv, )n ~ '6'pl3 lpl3. We
say that the scaling exponent is fp =p/3.
t> The energy spectrum, which is directly related to
the Fourier transform of the second-order structure
function, satisfies the Kolmogorov-Obukhov law E(k) =
CKO W2'3 k ~ s /3, where k is the wavenumber and CKO is
called the Kolmogorov-Obukhov constant. Scaling does
not predict a value for this constant.
> The eddy viscosity at scale I is given by v, ~ lvt ~
g>l/3 14/3

Obviously, basic scaling symmetry, which is assumed
to derive the above results, is broken at large and small

scales. At large scales, the mechanisms producing the
turbulence—for example, boundaries or external forces—
generally single out a scale L. For Kolmogorov's scaling to
hold at some scale /, it is therefore necessary that 14.L. At
small scales, molecular viscosity vmlA can be ignored only if
v/>vmoi- Therefore, scaling requires that l>ld, where
/,/ ~(v3

mtAl'Sf4 is called the Kolmogorov dissipation scale.
For ISl,,, molecular viscosity is important; it is at these
scales that viscous dissipation occurs. The range ld 4,1 <Z,,
in which scaling arguments apply, is called the Kolmo-
gorov inertial range. The predictions of the Kolmogorov
theory mentioned above are expected to hold universally
in the inertial range for all high-Reynolds-number flows.
Using our estimates of <S, we can evaluate the extent
L/ld of the inertial range in terms of R, namely, L/ld ~
vf^L3'4 /vZ4

0i = R3'4. Thus, in the Kolmogorov theory of
three-dimensional turbulent flow, there are at least on the
order of (R314 )3 = R9'4 dynamically active degrees of
freedom per volume L3.

It took nearly 20 years for the predictions of Kolmo-
gorov's 1941 theory to be tested convincingly. In 1962,
Grant, Stewart and Moilliet9 reported analyses of data
from a very-high-Reynolds-number flow in a tidal channel
in the wake of an island—since obliterated for navigation-
al purposes—near Vancouver. They measured an energy
spectrum approximating the Kolmogorov-Obukhov k ~ 5/3

law for over three decades of wavenumber (see figure 2).
Over the years, similar results have been observed in a
large number of high-./? flows.

The Kolmogorov scaling theory predicts scaling expo-
nents but not amplitudes. It must be supplemented by a
more quantitative theory or by input from measurements.
Kolmogorov's theory has other limitations of a more basic
nature. We address these questions in the following
sections.

Statistical theories
An early goal of the statistical theory of turbulence was
to obtain a finite, closed set of equations for average
quantities, including the mean velocity and the energy
spectrum. That goal is now viewed to be unrealistic. The
goal nowadays is to reduce to a manageable number the
many degrees of freedom necessary to describe the flow,
to determine the equations governing the dynamics of
the reduced degrees of freedom, and to solve those
equations analytically or numerically to calculate funda-
mental quantities that characterize the flow. Thus a
theory may treat all or only some of the degrees of
freedom statistically.

The validity of earlier statistical theories was often
tested by their ability to predict Kolmogorov scaling. It is
now recognized that this approach also is unrealistic.
While it is very reasonable to demand that the scale
invariance possessed by the basic Navier-Stokes equations
should survive the (severe) approximations involved in
any closure process for the equations for average quanti-
ties, that scale invariance should be viewed as an input to,
rather than as an outcome of, the theory.

Closure. Modern formulations of analytic turbu-
lence theory are mostly based on field-theoretic ideas. In
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Rate of dissipation of
concentration fluctuations of a
scalar contaminant in a
turbulent water jet. The rate
across a square cross section
of the jet illuminated by a
sheet of laser light is shown.
The extremely spiky character
of the rate is evidence of the
intermittency of the flow.
(Adapted from R. R. Prasad, C.
Meneveau, K. R. Sreenivasan,
Phys. Rev. Lett. 61, 74,
1989.) Figure 4

1958, Robert Kraichnan10 pioneered renormalized pertur-
bation techniques for statistical turbulence theory. He
showed that diagrammatic perturbation methods of the
sort developed in quantum electrodynamics are directly
applicable to the statistical Navier-Stokes problem.

Kraichnan showed that the analog of mass renormal-
ization in quantum electrodynamics is the renormaliza-
tion of viscosity to a spatially and temporally nonlocal
eddy viscosity. Using this concept, he proposed a field-
theoretic closure called the direct-interaction approxima-
tion. This was the first model for turbulence consistent
with basic probabilistic requirements. In fact, the direct-
interaction approximation gives the exact statistical
solution to a stochastic model having many properties in
common with the Navier-Stokes equations. However,
solutions to the direct-interaction approximation violate
the third assumption necessary for the Kolmogorov-
Obukhov law in the inertial range: Instead of. a k ' "
behavior, the direct-interaction approximation leads to a
k~3'2 inertial range spectrum. Indeed, the direct-interac-
tion approximation misrepresents the convection of small
eddies by large ones. Later, Kraichnan circumvented this
difficulty by using Lagrangian-coordinate formulations.
In this way he obtained very good quantitative agreement
with data such as those in figure 2 over the full range of ex-
perimentally accessible scales. Without further simplica-
tions, however, it is hard to apply theories such as
Kraichnan's to complex flows such as the inhomogeneous
shear flows, because their solution may then involve many
more dependent and independent variables than occur in
the original Navier-Stokes equations.

Renormalization group. A technically related but
conceptually rather different approach is based on renor-
malization group techniques."12 The RG method for the
Navier-Stokes equations is an adaptation of the RG
methods developed in critical dynamics. When an incom-
pressible fluid is subjected to a random force in such a way
that the energy input per unit mass per unit wavenumber

is Fik}~Dk:1 ' , with 0<f<l, the dominant nonlinear
interactions are between widely separated scales; actually
for e = 0 the eddy viscosity has an ultraviolet logarithmic
divergence." ID is the amplitude of the random force.) In
that case, the asymptotic leading-order Fourier-space
dynamics is given by a Langevin equation Su{k,t)/dt =
- v(k,t)k2u(k,t) + f(k,t) with an eddy viscosity v(k) that
increases slowly with scale 1= Ilk. The effective Reyn-
olds number at scale I then becomes sufficiently small to
allow a perturbative determination of the eddy viscosity
produced on even larger scales, thus "bootstrapping" the
solution. Explicitly, this bootstrap is expressed through
the differential recursion relation

AD
dk

(3)

with an explicitly evaluated constant A. Equation 3, apart
from the constant A, follows from dimensional analysis
and the condition that dv/d£ is evaluated to leading
(linear) order in the forcing spectrum F(k). The solution
constructed in this way inherits the scale invariance of the
force; the scaling exponent for the physical-space velocity
is h = e/3 — 1. It may be shown that this scaling relation,
originally due to Sam Edwards, is true to all orders in e, in
contrast to equation 3, which is valid only to leading order
in € for e small and positive. Thus, formally, Kolmogorov
scaling is obtained by setting e = 4. It must be emphasized
that the Kolmogorov-Obukhov inertial range that differs
sharply from the regime e4l originally described by these
RG techniques. For small e, the statistical equilibrium
results from a balance between the input due to the
assumed forcing and a drain due to eddy viscosity. In the
inertial range, both the input and the output originate
from nonlinear interactions.

Victor Yakhot and Orszag12 have recently extended
RG ideas to make quantitative predictions about ampli-
tudes in the Kolmogorov scaling regimes. Their model has
a random force with e = 4, and they calculate the
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amplitude D of the force from the energy flux S by a self
consistency argument. Among the results obtained to
date are explicit evaluations of the Kolmogorov-Obukhov
constant CKO~1.6, the von Karman constant for turbu-
lent boundary layers K = 0.37 and turbulence transport
coefficients for engineering modeling. Figure 3 shows a
massively separated turbulent flow over a step, which was
calculated using the ideas of Yakhot and Orszag—in
particular, an RG modification of a so-called K-"S trans-
port approximation.

In contrast to many other field-theoretic models, RG
models, because they involve a Langevin description with
an easily evaluated eddy viscosity, are easy to use in
complex flow problems. They thereby allow direct contact
with the early, heuristic, but rather successful, eddy
viscosity modeling of turbulence. The RG analysis of the
inertial range does involve bold steps that ignore some of
the subtleties of turbulence (see the next section), but the
method does not have the usual ad hoc adjustable
constants, and it may provide a rational basis for further
progress.

Intermiltency and fractals
Kolmogorov scaling is the backbone for the theories
presented above. The scaling has received experimental
verification for low-order statistical averages, as already
discussed, but there is also experimental evidence suggest-
ing that exact solutions to the Navier-Stokes equations
will weakly break the scaling invariance. For example,
while the Kolmogorov theory predicts that the pth-order
structure function scales with exponent fp = p/3, experi-
mental evidence1 '3 incorporating data from a variety of
flows suggests that fp is appreciably smaller than p/3 for
p>4. This implies that the statistics are increasingly non-
Gaussian at small scales, a phenomenon referred to as
inertial-range intermittency.

One gets a more dramatic visualization of intermit-
tency by simultaneously displaying the turbulent signals
on many scales,6 as in the wavelet transform. (See figure
1.) If the behavior in time is representative of the full
space-time structure of v(x,t), and if the cascade of
branching processes persists to the smallest scales, then in
the limit R — oo the fine scales of turbulence form a fractal
set. This was first realized by Benoit Mandelbrot14 in the
1960s. He noticed that earlier work of Kolmogorov and of
Evgeny Novikov and Robert Stewart had hidden geometri-
cal content that is consistent with fractal behavior. Since
then many kinematical and dynamical fractal models
have been constructed.

Satisfactory geometrical models of small-scale turbu-
lence must account for the paradox, however, that
neglecting intermittency and assuring scale invariance
gives a very satisfactory picture of turbulence energetics
(which involves only second-order moments) and that
significant corrections are needed mostly for higher-order
statistics.

The multifractal model has been suggested to resolve
this paradox.16 In this model, it is assumed that the flow
has structures whose velocities scale as Ah for a variety of
scaling exponents h, with each structure residing on a

fractal set of dimension D(h). Then the structure function
of order p scales with exponent gp = min,, [ph + 3 — D(hj\,
which is just the Legendre transform of 3 — D{h), the
codimension. A multifractal description of small scales of
a scalar passively convected by turbulence seems to be
consistent with some recent experiments (see figure 4).
Multifractality also provides a useful characterization of
phase-space singularities of attractors for dynamical
systems.17

Vortex dynamics
The geometrical models of intermittency discussed above
successfully describe observed deviations from Kolmo-
gorov 1941 scaling, but the dynamical mechanism for this
putative symmetry breaking is still poorly understood. A
key mechanistic ingredient for its understanding may be
vorticity dynamics.

For inviscid flow, the classical theorems of Kelvin and
Helmholtz show that vortex lines move with the fluid.
(Vortex lines are curves whose tangents are parallel to the
vorticity field to = V X v.) Infinitesimal segments of vortex
lines expand or shrink in time; the vorticity itself changes
in direct proportion to the changes in the infinitesimal
vortex-line elements. In three dimensions, vorticity am-
plification by stretching of vortex lines and vorticity
deformation by folding of vortex lines can lead to highly
intermittent vortical fine-scale structures. Such struc-
tures appear as vortex tubes, sheets and blobs in numeri-
cal simulations.18 Detailed visualizations of such struc-
tures—the picture on the cover of this issue is an
example—are essential for the development of a dynami-
cal theory. We stress that a nonzero value of viscosity is
necessary for the emergence of nontrivial vortex-line
topologies by viscous reconnection (see figure 5).19

Vortex stretching amplifies vorticity but does not
generate it. Vorticity is produced by viscosity near rigid,
no-slip walls and by buoyancy effects in the interior of
flows, for example. These vorticity-producing mecha-
nisms typically control the large-scale structure of turbu-
lent flows: The large-scale structure can be particularly
prominent near walls and laminar-turbulent interfaces,
and it may appear in a spatially intermittent—that is,
statistically spotty—way.

In an inviscid three-dimensional incompressible flow,
it has been speculated, vortex stretching may proceed
catastrophically even when the flow is smooth and
bounded, leading to vorticity singularities in finite time.
Although such issues have been studied intensively for a
number of years, they are not settled, and we cannot yet
rule out the possibility of solutions to Navier-Stokes
equations that are smooth and bounded for all time.

Vortex singularities, if they exist and are distributed
spottily, would provide a convenient mechanism for
breaking the scaling symmetry. On the other hand,
scaling symmetry can also be broken if there are long-
lasting organized (coherent) structures on all scales. The
existence in turbulence of persistent, large-scale coherent
structures is well documented. It is seen, for example, in
jets, mixing layers, boundary layers, and many other three-
dimensional flows. The existence of such structures in two-
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Vorticity in a three-dimensional flow during topological reconnection. The vortex pairing was induced by
perturbing two antiparallel vortex tubes in a low-viscosity fluid. (The low viscosity enables reconnection.) The
color intensity indicates the vorticity magnitude; there is significant turbulent activity in the region where the
vortex tubes merge. (Courtesy of Daniel I. Meiron, Caltech, and Michael |. Shelley, University of Chicago.
Graphic simulation done using software provided by Vital Images Inc.) Figure 5

dimensional flows has also been documented, even though
vortex stretching is absent in those flows and the physics
differs dramatically from the three-dimensional case.

Persistence of coherent structures requires that, in
some reference frame, the nonlinear term in the Navier-
Stokes equations be smaller than the order-of-magnitude
estimates of it based on the Reynolds number. For
example, the effect of the nonlinear term in the Navier-
Stokes equations decreases when the fluid vorticity is
nearly aligned with the fluid velocity or when there is a
pressure gradient: From the identity vVv + Vp/pn —
oix v + V(p/p0 + v2/2), it follows that the nonlinear term
can be partially subsumed into the pressure gradient and
that the nonlinearity is depleted if w tends to align with v.
Some coherent structures, like rapidly rotating atmo-
spheric storms, have been observed to have this geometric
character. Small-scale coherent structures with signifi-
cantly depleted nonlinearity have also been found in
computer simulations.

A hotly debated issue in turbulence theory is whether
a purely statistical description that does not explicitly
account for structures is sufficient to capture the univer-
sal features of turbulence. In critical phenomena, Ken-
neth Wilson's renormalization group is often successful
even though it, too, does not explicitly invoke structures.
There are instances, however, where information about
the structure of the excitation is essential. The spin
vortex structure in a two-dimensional spin model, the X-Y
model, explained by the Kosterlitz-Thouless theory,^0 is
an example. The limitations of purely statistical descrip-
tions of turbulence must be further explored.

What next?
Over the past two decades, there have been major
advances in the use of numerical simulations to compute
turbulent flows. It is now widely accepted that moderate-
Reynolds-number turbulent flows in simple geometries
can be as well analyzed by advanced computer simulations
as by laboratory experiments. This rich and rapidly
developing field deserves a separate review. We focus here
instead on challenges for theory and experiment.

Challenges for theory. However hard it may be to
make forecasts, we nevertheless think it useful to assess

what now seem to be reasonable—and unreasonable—
goals of turbulence theory. Among the distant yet
reasonable goals are:
> The complete description of turbulence as a state of
matter.
> The derivation of the observed universal features, such
as scaling and intermittency, from a well-defined set of
assumptions.
O The application of our present and future understand-
ing of turbulence to predict and control its effects, even in
complex situations such as those involving contaminants,
combustion, free surfaces and magnetic fields.

We may also add to the list two more immediate goals:
the qualitative understanding of the origin of spatial
chaos, and the mathematical description of coherent
structures.

Some other goals for turbulence theory seem to us
somewhat unreasonable, but we think it instructive to
mention them here. For example, it is well known that de-
tailed properties of turbulent flows at far-off times cannot
be predicted. However, even the statistical properties of
these flows may be "uncomputable." Indeed, it is known
that some of the simplest deterministic dynamical systems
have several attractors with highly intertwined basins of
attraction, so that the correspondence between their
initial conditions and final behavior seems to be "uncom-
putable" in the sense used in algorithmic theory. Demon-
strating this rigorously is a challenge for mathematicians.
If true, it would imply, in the context of meteorology for
example, that while the weather clearly is not predictable
at long times, neither, in fact, is the climate. It is also un-
reasonable to aim for a grand, exact, eternal turbulence
theory; it seems to us more likely that there is an infinite
hierarchy of increasingly refined descriptions of turbu-
lence suitable for increasingly refined experimental verifi-
cation. The asymptotic behavior in the limit of infinite
Reynolds number and infinitely small external noise may
well be infinitely complex.

Challenges for experiments. We believe that new
turbulence experiments using state-of-the-art techniques
borrowed from other branches of physics are a prerequi-
site for basic progress in a field of such tremendous—and
apparent—complexity. Many of these experiments should

PHYSICS TODAY JANUARY 1990 3 1



be designed to address questions posed by our current
ideas about turbulence. But experiments conceived and
formulated without prejudice to existing ideas are also
important, provided that the control, instrumentation,
processing and analysis are state of the art. An example of
the latter type of experiment is the recent study at the
University of Chicago21 of high-Rayleigh-number thermal
convection in a gaseous helium cell, which revealed new
scaling regimes and flow structures. The results from this
experiment allowed a refinement of the classical scaling
theory of convection. A significant feature of that
experiment is that it explored regimes exhibiting a form of
turbulence with the control and accuracy nowadays
characteristic of experiments on transition to chaos.

The challenging questions for future experiments
include:
> Are the small-scale properties of very-high-i? flows
truly universal, or is the breaking of scale invariance
(intermittency) dependent on boundary and initial condi-
tions, external forces and so on?
t> Is there a hierarchy of structures in turbulence, and
how can those structures be characterized dynamically or
topologically? How does turbulence react to organized
and random disturbances? This question is relevant to
achieving active and passive control of turbulence for drag
reduction, enhanced or diminished mixing, and other
effects.
> What is the behavior of more complex turbulent flows
in which compressibility, sound production and propaga-
tion, chemical reactions and combustion, magnetohydro-
dynamics effects, non-Newtonian behavior, multiphase
effects and so on may be present?

Experiments seeking to answer these questions will
require tradeoffs between control and accuracy on the one
hand and the complexity of the flow situation on the other.
It is highly desirable that facilities have very well
controlled environments and that data be analyzed with
careful error estimates. A high priority should be the
development of data acquisition and visualization tech-
niques that will give spatio-temporal information across a
broad range of scales. High-repetition-rate laser scanning,
holographic methods, and fluorescence and scattering
techniques, combined with advanced digital processing,
are among promising approaches. The invention of
special techniques for strophography (the spatial visual-
ization of vorticity intensity) would have a major impact
on the field.

A wide range of new facilities will be required to meet
these challenges, including both open- and closed-flow
facilities. Among exciting new small-scale devices could
be a cryogenic (helium) wind tunnel with innovative
probes. Since the viscosity of cold helium gas is on the or-
der of 1CT 3-10 ~ 4 cm2/sec, such a facility should be capable
of achieving high Reynolds numbers in a very controlled
environment.

A number of large-scale facilities were suggested at a
workshop held in December 1987.22 They include:
t> A water tank with a moving grid generating turbulence
with no appreciable mean velocity, thereby simplifying
visualization, and with a range of R values that are
tunable by adjusting the grid motion
> A pipe air-flow facility with large aspect ratio, so that
the turbulence is well established and the fluid is relaxed
to equilibrium
> A circular Couette flow facility in water or air to
explore regimes with and without organized structures.
These facilities will need to be well instrumented and
controlled, and they will need to be integrated with
massive computer capability for data acquisition, storage
and processing. They will have to be at least one order of
magnitude larger than the facilities already available in

order for them to provide answers to the questions posed
above. Such experiments will require an internationally
coordinated community effort.

Let us conclude by noting that less is known about the
fine scale of turbulence—for example, the scale of 1 mm in
the atmosphere—than about the structure of atomic
nuclei. Lack of basic knowledge about turbulence is
holding back progress in fields as diverse as cosmology,
meteorology, aeronautics and biomechanics. Understand-
ing the hierarchically organized complexity of turbulence
may well provide a paradigm for understanding a variety
of problems at the frontiers of physics research.
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