nere interesting physics can be disvered and learned.

It is magnetic activity that makes e Sun truly fascinating. Differenil rotation and convection in the n's interior act as a dynamo genering a global field, which reverses elf every 11 years. The magnetic ld gives rise to the 22-year sunspot cle as well as a wealth of nonlinear d nonlocal fluid and plasma prosses in the solar atmosphere. The nsequence is a highly structured mosphere that evolves over all obryable time scales down to subconds, and a highly heated upper nosphere, the corona, that expands to the solar wind blowing supersonilly past the Earth.

A quarter of Zirin's book describes e hardware used for solar observans and treats elementary radiative insfer, atomic physics and plasma ysics. The remaining, larger part the book describes the Sun itself. cluded are stimulating discussions the new prospect of seismically obing the solar interior, the mysteris clumping of the photospheric agnetic field into discrete fibrils, the uilibrium of global and local strucres, the general phenomenon of ar activity, and the puzzles posed the solar flare and other eruptive enomena-to name just some of the eoccupations of solar physics. In ech of these topics, there is much we not understand fully, and what we know is physically intriguing. [See article by Eugene Parker in PHYS-

: TODAY, July 1987, page 36.] Zirin writes in a direct, personal le, voicing occasional strong opinas and conveying his excitement out the many beautiful observans he describes. He interprets lese observations and evaluates the erpretations critically, using an tirely intuitive approach, but with tle attempt to understand theory. rin holds the extreme opinion that ne observers don't know how to culate and the calculators don't ow what is observed.") Scattered oughout the book are many undeed, confused or incorrectly stated coretical concepts; chapter 3 has veral examples. Zirin's lack of apeciation for theory often results in a aspicuous lack of physical content. my of his interpretive analyses id as though some of the phenomelogical constructs have acquired a ility independent of physical prinles. His discussions become burned by a cumbersome nomenclae not always adequately explained the book. Solar phenomena are nplex, and more physical considerons should take over from pure intuition in interpreting observations when enough of the pertinent physics has been identified. Getting at that physics requires that theorists and observers learn from each other rather than avoid the strong coupling of their trades. Otherwise, the awesome images of solar observation easily distract us from the true physical significance of the Sun which has taught us about atomic physics, radiative transfer and a host of fluid, hydromagnetic and plasma processes, among them the dynamo mechanism, magnetic heating, the solar wind, collisionless shocks and particle acceleration. Although Zirin's treatments will be discouraging to readers interested in the physics, his book is still recommended reading: The broad range of descriptive phenomenology covered, the wonderful collection of pictures and the fascination of the Sun are the selling points.

Boon Chye Low National Center for Atmospheric Research

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Richard R. Ernst, Geoffrey Bodenhausen and Alexander Wokaun Clarendon (Oxford U. P.),

New York, 1987. 610 pp. \$98.00 hc ISBN 0-19-855629-2

Nuclear magnetic resonance has been applied to an astonishing variety of problems and is the foremost analytic tool of the chemist. It has also been developed in truly unexpected and sophisticated ways, and this book documents the theory behind recent developments. The term "nmr in one dimension" refers primarily to pulsed Fourier-transform nmr, in which the transient signal stimulated by a short rf pulse is converted to low frequency, digitized and transformed to get a frequency-domain spectrum. A simple realization of two-dimensional nmr is a set of a few hundred spinecho sequences in which the time between two stimulating pulses is varied from zero to several tenths of a second, and all the echoes are digitized and saved separately in a computer's memory. Fourier-transform spectra of each echo, transformed a second time with respect to the time between the stimulating pulses, produce a two-dimensional contour map in the spectral domain. In this case the map gives subspectra of pairs of spins in one spectral dimension, ver-

COUNTER INTELLIGENCE

207X-03 interfaces counter to printer, terminal or computer.

207X-03

- Provides 8-digit readout to EIA RS-232C device
- Fits inside counter no NIM space required
- Assigns I.D. numbers to chain of 1-99 units
- Multiplexes independent counting systems
- Provides for computer control of Start, Stop and Reset

2071A

- Two Counters and Timer
- Preset Count or Time
- 100 MHz Count Rate capability
- Adjustable Discriminators
- Independent Gating of Inputs

Canberra Instruments

One State St. Meriden, CT 06450 (203) 238-2351

Circle number 26 on Reader Service Card

sus their spin-spin coupling in the other dimension. The general method can be extended, almost without foreseeable limits. The single pulses used in this simple example can be elaborated to produce and to selectively read out many forms of coherence or other phenomena such as through-space Overhauser effects. These include coherences that are highly forbidden to direct magnetic detection, such as those between states that differ by more than a single spin flip. Not only are these methods interesting; they are also extremely useful for determining, for example, structure and dynamics of macromolecules.

Richard Ernst and his coworkers have undoubtedly developed a larger variety of two-dimensional nmr methods than anyone else, and they have also been in the forefront of theoretical analysis. Therefore it is a pleasure to welcome this treatise, which covers the theory of these methods in a unified way. The book is primarily concerned with nmr of molecules in solution. This subject lends itself to a unified theoretical approach because such molecules contain finite spin systems, which interact only weakly and for which a single kind of external operation—a short rf pulse—can be used, alone or in combination, to produce all the results described in this book.

Much of the discussion is couched in superoperator formalism, which is necessary for a unified treatment. The book is not written for the casual reader. It starts from elementary spin and statistical theory and carries the reader through the theory to the most sophisticated experiments in a way not hard to follow once the reader abandons trying to read the book through from beginning to end and instead pursues the many internal cross-references. These cross-references, and the literature references as well, are both frequent and excellent.

This is not really a comprehensive textbook of nmr theory or experimental technique, although it does treat a large number of topics outside its main subject of two-dimensional nmr in solution. Many of these, such as nmr in solids, have already been well covered in other treatises and are discussed rather briefly here. The book also does not impart much feeling for experimental strategy; the methods are all here, but you will have to look at the current literature to learn which ones are really used in practice. A beginner would want to read this text in conjunction with other, more experimentally oriented ones on nmr as applied to physics and

chemistry, or would want to ask for guidance from an nmr specialist.

Spectroscopists in other high-resolution fields of physics may find some useful ideas here. The book is also worthwhile reading for anyone interested in applications of superoperator theory. It joins the treatises of Anatole Abragam (Principles of Nuclear Magnetism; Oxford U. P., New York, 1961) and Charles Slichter (Principles of Magnetic Resonance; Springer-Verlag, New York, 1961; third edition in press) as an indispensable classic in nuclear magnetic resonance.

Alfred G. Redfield Brandeis University

NEW BOOKS

Atomic Physics

Advances in Atomic and Molecular Physics, Vol. 25. D. Bates, B. Bederson, eds. Academic, San Diego, Calif., 1988. 559 pp. \$99.50 hc ISBN 0-12-003825-0. Compilation

Aspects of Many-Body Effects in Molecules and Extended Systems. Lecture Notes in Chemistry 50. Proc. Wksp., Calcutta, February 1988. D. Mukherjee, ed. Springer-Verlag, New York, 1989. 565 pp. \$73.00 pb ISBN 0-387-50765-5

Fundamental Processes of Atomic Dynamics. NATO ASI Series B: Physics 181. Proc. Inst., Maratea, Italy, September 1987. J. S. Briggs, H. Kleinpoppen, H. O. Lutz, eds. Plenum, New York, 1988. 693 pp. \$120.00 hc ISBN 0-306-42988-8

Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. P. Érdi, J. Tóth. Princeton U. P., Princeton, N. J., 1989. 259 pp. \$59.50 hc ISBN 0-691-08532-3. Monograph

Methods in Computational Chemistry, Vol. 2: Relativistic Effects in Atoms and Molecules. S. Wilson, ed. Plenum, New York, 1988. 291 pp. \$55.00 hc ISBN 0-306-42946-2. Monograph compilation

Methods of Molecular Quantum Mechanics. Second edition. R. McWeeny. Academic, London, 1989. 573 pp. £65.00 hc ISBN 0-12-486551-8. Monograph text

Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Revised edition. A. Szabo, N. S. Ostlund. McGraw-Hill, New York, 1989. 466 pp. \$39.95 hc ISBN 0-07-062739-8. Text

Simple Molecular Systems at Very High Density. NATO ASI Series B: Physics 186. Proc. Wksp., Les Houches, France, March 1988. A. Polian, P. Loubeyre, N. Boccara, eds. Plenum, New York, 1989. 512 pp. \$105.00 hc ISBN 0-306-43028-2

The Structure of Small Molecules and Ions. Proc. Wksp., Neve Ilan, Israel, December 1987. R. Naaman, Z. Vager. Plenum, New York, 1988. 351 pp. \$75.00 hc ISBN 0-306-43016-9

Topological Methods in Chemistry, R. E. Merrifield, H. E. Simmons. Wiley, New York, 1989. 233 pp. \$35.00 hc ISBN 0-471-83817-9. Text

History and Philosophy

The Michelson Era in American Science 1870–1930. AIP Conference Proceedings 179. Proc. Symp., Cleveland, Ohio, October 1987. S. Goldberg, R. H. Stuewer, eds. AIP, New York, 1988. 300 pp. \$54.00 (\$43.20, AIP members) hc ISBN 0-88318-379-X

Niels Bohr: Physics and the World. Proc. Symp., Boston, November 1985. H. Feshbach, T. Matsui, A. Oleson, eds. Harwood Academic, New York, 1988. 364 pp. \$24.00 pb ISBN 3-7186-0494-9

Reality and the Physicist: Knowledge, Duration and the Quantum World. B. d'Espagnat (translated from French by J. C. Whitehouse, B. d'Espagnat). Cambridge U. P., New York, 1989 [1985]. 280 pp. \$59.50 hc ISBN 0-521-32940-X; \$19.95 pb ISBN 0-521-33846-8. Monograph; originally published by Bordas as Une incertaine réalité

The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century. J. Z. Buchwald. U. of Chicago P., Chicago, 1989. 474 pp. \$75.00 hc ISBN 0-226-07884-1; \$24.95 pb ISBN 0-226-07886-8. Monograph

Science and Providence: God's Interaction with the World. J. Polkinghorne. Soc. for Promoting Christian Knowledge, London (NW1 4DU), 1989. 114 pp. £5.95 pb ISBN 0-281-04398-1. Lay readers

Theories of the Earth and Universe: A History of Dogma in the Earth Sciences. S. W. Carey. Stanford U. P., Stanford, Calif., 1988. 413 pp. \$45.00 hc ISBN 0-8047-1364-2. Monograph; lay readers

Physical Electronics

Introduction to Power Electronics. Monographs in Electrical and Electronic Engineering 20. E. Ohno. Clarendon (Oxford U. P.), New York, 1988. 290 pp. \$95.00 hc ISBN 0-19-859338-4

Laser Chemical Processing for Microelectronics. Cambridge Studies in Modern Optics 7. K. G. Ibbs, R. M. Osgood, eds. Cambridge U. P., New York, 1989. 172 pp. \$49.50 hc ISBN 0-521-32254-5

Optical Fiber Telecommunications II. S. E. Miller, I. P. Kaminow, eds. Academic, San Diego, Calif., 1988. 995 pp. \$59.50 hc ISBN 0-12-497351-5

Optical Integrated Circuits. McGraw-Hill Optical and Electro-Optical Engineering Series. H. Nishihara, M. Haruna, T. Suhara (translated from Japanese). McGraw-Hill, New York, 1989 [1985]. 374 pp. \$44.95 hc ISBN 0-07-046092-2

Ultra-Fast Silicon Bipolar Technology Springer Series in Electronics and Photonics 27. L. Treitinger, M. Miura-Mattausch, eds. Springer-Verlag, New York, 1988. 167 pp. \$34.00 hc ISBN 0-387-50638-1