
LIQUIDS, CRYSTALS
AND LIQUID CRYSTALS

Concepts developed to explain melting in two
dimensions and multicritical phenomena in three
dimensions lead to a detailed model for the growth
and structures of smectic liquid crystal materials.

Joel D. Brock, Robert J. Birgeneau, J. David Lirsrer
and Amnon Ahorony

In thinking about the states of condensed matter, we
usually consider two extremes. At one extreme are
crystalline solids, in which atoms form a perfectly periodic
array that extends to infinity in three directions. At the
other extreme are fluids or glasses, in which the atoms or
molecules are completely disordered and the system is
both orientationally and positionally isotropic—that is,
the materials look the same when viewed from any
direction.

For many decades, however, physicists have realized
that an intermediate state of matter is possible. In such a
state the atoms or molecules are distributed at random, as
in a fluid or glass, but the system is orientationally
anisotropic on a macroscopic scale, as in a crystalline solid.
This means that some properties of the fluid are different
in different directions. Order of this sort is known as bond-
orientational order. Although such phases of matter have
long been recognized to be theoretically possible, little
work was done on them until recently because there did
not appear to be any realizations of them in nature.
Indeed, as Rudolph Peierls, one of the pioneers of solid-
state physics, recently commented to us, "We knew in the
1930s that it was possible theoretically for the positional
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and orientational order to vanish at different tempera-
tures; we just could not think of a scenario in which it
would actually happen."

Ironically, it turns out that appropriate physical
systems—smectic liquid crystals—not only were known at
that time, but also had been discussed extensively even
earlier, by Georges Friedel and Karl Herrmann in the
1920s.1 (See box on page 55 for a discussion of smectic
liquid crystals and their phases.) Some 50 years passed,
however, before a proper association was made between
the smectic liquid crystal phases and the concept of
distinct translational and orientational order.2 This
connection came not directly but indirectly, via the
development of a theory of melting in two dimensions.3'4
As we shall discuss, the application of these concepts to
liquid crystals leads to a natural classification of the
smectic phases.

At the same time this theory was under development,
synchrotron x-ray studies of freestanding liquid crystal
films have provided new, incisive information in two and
three dimensions that confirms the basic theory. These
successes in turn have led to the development of a detailed
model for the growth of two- and three-dimensional bond-
orientationally ordered smectic liquid crystals, in which
one applies concepts from renormalization-group theories
of multicritical phenomena in magnets. We can now use
these models to understand in detail the ordering pro-
cesses in such diverse physical systems as rare earth
magnets, thin films on crystalline substrates, lamellar
high-T^ superconductors and biological systems such as
the one pictured on the cover of this issue. Liquid crystals
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Spiral star defect in a three-layer film of the liquid crystal (5)-4-(2'-methylbutyl)-phenyl-4-/7-octylbiphenyl-4-
carboxylate in the chiral S, phase just below the Sc- —S, transition. (Courtesy of Steven Dierker, AT&T Bell
Laboratories.) Figure 1

themselves, of course, have broad technological impact in
such diverse areas as display devices, solid-state electron-
ics and tertiary oil recovery.

Two-dimensional melting
In the early 1970s J. Michael Kosterlitz and David J.
Thouless3 in England and V. L. Berezinski in the Soviet
Union proposed a theory of the superfluid transition in
two dimensions. In these theories, thermally generated
vortices exist in the superfluid wavefunction in bound
pairs of opposite vorticity below the transition tempera-
ture Tc. Above Tc these vortex pairs unbind, destroying
the superfluid state in a manner that Kosterlitz and
Thouless were able to describe quantitatively. Kosterlitz,
Thouless and Berezinski suggested that similar ideas
could be applied to the melting of a two-dimensional
crystal, with dislocations taking the place of vortices.
Subsequently, quantitative theories of melting based on
these ideas were developed by Bertrand I. Halperin and
David R. Nelson and by A. Peter Young.4

The positional order parameter for a planar crystal is
the first Fourier component of the mass density pK ; for a
triangular crystal the magnitude of the reciprocal lattice
vector K is 4ir/V3a, where a is the interatomic spacing. In
a two-dimensional solid the mass density correlation
function </9_K(r)PK(0)> decays with distance (as r '')
instead of remaining nonzero, as true long-range order
requires. In a liquid phase the positional correlations
decay as e r / S where £ is the positional correlation
length. As we shall discuss later, in the different smectic

liquid crystal phases E, can vary from a few to a few
hundred lattice spacings.

Following earlier work by David Mermin,5 Halperin
and Nelson introduced the idea of a bond-orientational
parameter *6(r) = <el6'"rl >. Here the 6 implies that one is
explicitly considering a system with sixfold rotational
symmetry. Imagine a bond between two neighboring
atoms. The bond orientation 0{r) is defined as the angle
between this bond direction at position r and some
reference axis (Kr). The bond-orientational-order param-
eter is complex because one must specify both the
magnitude of the orientational order and the direction of
the axes in space; that is, one needs two degrees of
freedom. As Lev Landau noted originally and Mermin
discussed in detail, two-dimensional solids have true long-
range orientational order.

Halperin and Nelson proceeded to make a remarkable
prediction: melting in two dimensions could occur in two
steps. At one temperature TM the dislocations would
unbind and the positional order would be lost. However,
the orientational order would remain, or, more precisely,
would be converted from true long-range order to order
that decays algebraically, that is, <*£(()) *6(r)> Z r '". In
a system of finite size or in a very small ordering field this
new state of matter would have well-defined crystalline
axes but no positional order. Such a state of matter is
called "hexatic" for two-dimensional systems with hexag-
onal symmetry.'1

The second melting transition temperature suggested
by Halperin and Nelson is peculiar to the hexatic phase
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and denoted TH . In a hexatic phase, the defect analogous
to a vortex in a superfluid is a "disclination"—a point in
space at which the local axes rotate by either + 60° or
— 60°. In the hexatic phase there are no free disclinations;
they are always paired. At TH the disclinations would
unbind. The resultant high-temperature phase would be a
normal fluid with exponentially decaying positional and
orientational order.

The existence of two-dimensional hexatics has now
been proven beyond a doubt. Figure 1 shows the optical
signature of a spectacular defect in the hexatic phase of a
three-layer liquid crystal film near the hexatic-fiuid
transition. This observation of the defect structure, by
Steven Dierker, Ronald Pindak and Robert Meyer at
AT&T Bell Laboratories, was part of the first direct proof
of the existence of a true two-dimensional hexatic phase.6

Liquid crystals
As the theories of melting in two dimensions were being
developed, advances were also being made in the under-
standing of liquid crystals. Liquid crystals are usually
long, rod-like organic molecules. An example is racemic 4-
(2-methylbutyl)-phenyl-4'-(octyloxy)-(!,!')-biphenyl-4-

Scattering functions for isotropic and positional^, ordered
liquid crystals, a: Schematic illustration of the in-plane x-ray
scattering function for an isotropic smectic liquid crystal. The
six circles are the 20%, 40%, 60%, 60%, 40% and 20%
intensity contour lines. The inverse of half the width AC? of
the diffraction peak measures the distance | over which the
molecules are positionally ordered. The momentum transfer
Q is related to the average molecular separation a as
indicated, b: The same scattering function for an
orientationally ordered hexatic liquid crystal. The contour
lines represent the 20%, 40%, 60% and 80% intensities.
The hexatic spots are more intense because the total scattered
intensity is conserved. Figure 2

carboxylate, which is usually given the more convenient
name 8OSI. It has the structure

CH3
- C H , - C HCRH170-

Liquid crystals form many different phases, some of
which were quite mysterious for decades. In many of these
phases the molecules tend to line up in parallel and then
segregate into layers. Such phases are referred to as
smectics. By the 1970s researchers had identified at least
11 such phases and had given them the rather mundane
labels SA, SB, S c , . . ., SK . There was, indeed, no
consensus on what differentiated these phases and,
specifically, what different sorts of order they exhibited
microscopically.

Bond-orientational order turned out to be the missing
idea needed to clarify the order found in smectic phases.
Below we describe the development of a detailed model for
these phases and their order parameters. The box on page
55 gives the essential structural details of the phases
according to this model. In 1978 Birgeneau and Litster
suggested that some of the exotic smectic liquid crystal
phases might actually be three-dimensional realizations of
a bond-orientationally ordered phase. In this view, each
smectic layer is an independent, two-dimensional, bond-
orientationally ordered system: The SB phase is the bond-
orientationally ordered version of the SA phase, and the S,
phase is a bond-orientationally ordered version of the Sc
phase. The effect of the three-dimensional coupling is to
convert the algebraic decay of the Halperin-Nelson
hexatic phase to true long-range order. It thus turns out
that the three-dimensional SB, SF and S] phases would
have true long-range orientational order but only short-
range positional order.

Order in freestanding films
Conceptually, an experiment to test the above-mentioned
model for the classification of smectic liquid crystals is
straightforward. One can draw these materials over an
opening in a slide to form freestanding films (that is, flat
bubbles); the layers are then oriented parallel to the
surface of the film by surface tension. Friedel originally
suggested this approach in the 1920s.1 However, the
technique of preparing freely suspended films of liquid
crystals was not in fact developed until the late 1970s, in
an elegant set of experiments by the liquid crystal group at
Harvard.7

In such experiments SA-phase material is piled
around the edges of a 6-mm-diameter hole, made in a thin
plate of glass, stainless steel or some other inert substance.
The SA material is then drawn across the hole with a
wiper blade, creating the freely suspended film. The
smectic layers align parallel to the free surfaces. By
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Smectic Phases
Smectic liquid crystals are characterized by an intermedi-
ate degree of positional order in addition to molecular-
orientational order and, in some cases, bond-orienta-
tional order. The term "smectic" derives from the Creek
smegma, meaning soap; the smectic phases tend to have
mechanical properties similar to those of the layered
phases of soaps. Smectics have historically been identi-
fied by the textures they exhibit under a polarizing
microscope and by studies of their miscibility with known
smectic phases.16

The simplest smectic phase is the smectic A phase,
denoted SA . This phase has traditionally been described
as a system that is a solid in the direction along the
director and a fluid normal to the director; equivalently, it
is a stacked two-dimensional fluid. It is more properly
described as a one-dimensional density wave, along the
nematic director, in a three-dimensional fluid. In fact, in
real SA materials, x-ray scattering shows that the higher
spatial harmonics of the density wave are surprisingly
weak. Thus the smectic planes should be interpreted not
as lattice planes but rather as planes of a certain phase of
a sinusoidal density wave.

The smectic C phase Sc is similar except that the
density wave vector makes a nonzero angle with the
director; this angle is known as the tilt. In both the SA and
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Sc phases there is complete translational symmetry
perpendicular to the density wave vector.

The remaining smectic phases all possess more order
than the SA and Sr phases. One of two phases formerly
labeled the smectic B phase is now believed to be an
example of a stacked hexatic phase, and is denoted SBH .
In each smectic layer of the SBH phase, the director is
parallel to the smectic density wave, as in the SA phase,
and there is short-range positional order in the smectic
plane; however, there is long-range bond-orientational
order in the smectic plane. The S, and SF phases are
similar to the SeH phase, but, as in the Sc phase, the
director makes a finite angle with the density wave
vector. The figure below illustrates the distinction be-
tween the S, and SF phases: The projection of the
director onto the smectic planes points toward a near
neighbor in the S, phase and between two near neighbors
in the SF phase.

If order continues to increase, we leave the true
liquid crystal phases. The SBC phase is actually a three-
dimensional crystal. Similarly, the S, and Sc phases are
crystalline versions of the S, and SF phases. Other
smectic phases (SE, SH, SK) are arrived at by including
additional types of ordering such as herringbone pack-
ing.

Microscopic ordering
exhibited by liquid crystal
molecules in the principal
smectic phases. The
molecules are cigar shaped.
Thus solid ovals are used to
represent the side view;
circles, the top view. Triangles
and arrows indicate tilt
direction. Dots represent
periodic lattice points. Open
ovals indicate the in-plane
packing found when rotation
about the long axis of the
molecule is not allowed.
(Adapted from ref. 15.)
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Top view Top view
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varying the temperature, the rate of motion of the wiper
and the amount of SA material, one can prepare stable
films ranging in thickness from two molecular layers to
several microns. The variable thickness of the films
suggests the possibility of tuning the dimensionality of the
sample; the potential for studying the effect of dimension
experimentally, however, has only recently been realized.

In 1979 David Moncton and Pindak recognized that in
the thin-film limit, freely suspended films of liquid crystal
material should provide ideal substrate-free systems in
which to study two-dimensional melting.8 They began a
series of studies on the melting of very thin films at the
SA -SB phase transition, using synchrotron x-ray sources.
Figure 2 illustrates the expected in-plane diffraction
patterns for the isotropic (SA) and hexatic (SB) fluid
structures.

Consider first the normal-fluid isotropic scattering

function shown in figure 2a. There are three features of
note. First, one expects a peak at a momentum transfer Q
of about 4n7(v/3a), where a is the average molecular
separation. Second, if the fluid is isotropic, the intensity
and shape of this peak must be independent of direction.
Therefore, if one scans the angular variable y, denned in
figure 2b, one should not see any variation in the strength of
the scattering. Third, the width AQ of the scattering ring
should be about 2/£, where £ is the length scale on which po-
sitional correlations between the molecules decay. Such
diffraction patterns are seen ubiquitously in fluids.

For the hexatic diffraction pattern (figure 2b) the ring
positions and widths AQ are the same as they are for the
isotropic fluid phase described above. However, in the
bond-orientationally ordered hexatic phase, the fluid
develops a sixfold modulation in the angular variable y;
that is, the angular isotropy is broken. The system is still
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Thick-film scans. Results are shown from
angular x-ray scans made in a thick film of the
liquid crystal 8OSI in the immediate vicinity of
the Sc—S, phase transition. The scans were of
the type shown in figure 2. At high
temperatures, the scattering ring is uniform to
within counting statistics. As the sample is
cooled, a sinusoidal modulation with a period
of 60° develops, indicating a substantial
amount of hexatic bond-orientational
ordering.10 Figure 3

a fluid, however, because the positional order is still short-
range. At a lower temperature the material may freeze,
condensing the modulated ring of fluid scattering into
sharp spots. Sharp diffraction peaks, or Bragg peaks, are
the signature of a crystal.

Moncton and Pindak's first set of experiments showed
that, contrary to the Birgeneau-Litster hypothesis, the SB
phase found in the liquid crystal compound N-(4-n-
butyloxybenzylidene)-4-re-octylaniline has three-dimen-
sional long-range positional order and is therefore a true
crystalline phase. Subsequently, however, Pindak and his
coworkers,9 working with x-ray scattering, observed a
hexatic bond-orientationally ordered SB phase in a freely
suspended film of the liquid crystal rc-hexyl-4'-rc-pentyloxy-
biphenyl-4-carboxylate. Thus "SB " refers to two distinct
phases, which are now called the SBC (crystal) and the SBH
(hexatic) phases. Although these experiments identified a
bond-orientationally ordered phase, Pindak's group was
not able to obtain quantitative information on the bond-
orientational order. The variable number of domains
present within the probed area made such quantitative
measurements impossible. One needs single-domain hex-
atic samples to obtain quantitative information on bond-
orientational order.

In the past three years major advances have been
made on this problem. The first clear demonstration that
the Si phase in very thin films has hexatic bond-
orientational order was the elegant experiment of
Dierker, Pindak and Meyer referred to above.6 A + 2w
point disclination in the director field (the field that

specifies the local average orientation of the molecules) is
a common defect in the Sc phase; in this disclination, the
orientation of the director follows a circumferential path
around the defect core. In the S, phase, the tight
distortion near the defect core produces a large bond-
orientational-order strain due to coupling between the
molecular tilt (the tilt of the director) and the bond-
orientational order. This strain can be relaxed, at the
expense of director disclination line energy, by creating
radial lines of 60° disclinations that separate regions of
relatively uniform director orientation. Using depolar-
ized laser reflection microscopy to study a freely suspend-
ed film, Dierker and his colleagues observed this defect in
a very thin film of the liquid crystal compound racemic 4-
(2'-methylbutyl)-phenyl-4-«-octylbiphenyl-4-carboxylate.
Thus they demonstrated that the S, phase has hexatic
bond-orientational order. Near the hexatic-fluid transi-
tion this defect takes on the elaborate geometry illustrated
in figure 1.

The second major advance was the discovery that by
applying a small magnetic field, the tilt direction of the di-
rector in Sc films could be oriented at the SA-SC phase
transition, and that as the liquid crystal cooled from the
Sc phase to the S, phase, the hexatic axes would develop
at fixed angles relative to the molecular tilt (see the box on
page 55) and therefore at fixed angles relative to the
magnetic field. The net result was a single-domain S r
phase sample. The first quantitative measurement of a
bond-orientational-order parameter was a systematic set
of synchrotron x-ray diffraction experiments using freely
suspended films of the liquid crystal 8OSI in a small
magnetic field of about 1 kG.

There are two caveats about using the tilted hexatic
phases to study bond-orientational order. First, when the
phase transition in the idealized field-free case is a
continuous transition, the tilt field introduces a linear
term in the free energy that formally destroys the phase
transition. (A magnetic field applied to a ferromagnet has
the same effect.) As long as the coupling between the
bond-orientational order and the molecular tilt is weak,
however, there is no serious difficulty; the critical
behavior can be extracted by considering the full equation
of state. Second, the twofold symmetry of the tilt field
destroys the sixfold symmetry of the hexatic axes. The
loss of sixfold symmetry may be a more serious complica-
tion, and one must observe the scattering on a case-by-case
basis to determine whether the loss of sixfold symmetry is
significant.

Experiments on thick films
As discussed above, the in-plane x-ray scattering function
of the SA phase is a diffuse ring characteristic of the fluid
order in the smectic layers. For the Sc phase, the shape of
the diffuse ring is more complex, since its tilt is caused by
the tilt of the molecules. There is no fundamental
difference, however, and so for simplicity we refer to the
more complicated scans required to probe the bond-
orientational order in tilted smectics as \ scans. The point
to bear in mind is that in an x-ray scattering experiment,
any modulation in a x s c a n indicates long-range orienta-
tional order. The orientation of the bond-orientational-
order axes must persist over lengths comparable to the
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dimensions of the illuminated area; otherwise the orienta-
tional structure will average out over different regions of
the illuminated area.

Figure 3 shows results10 from \ scans at several
temperatures near the Sc-S, phase transition in a thick
film of 8OSI. At high temperatures the ring is uniform to
within counting statistics. As the sample is cooled, a
measurable sinusoidal modulation of the ring develops.
At a temperature of about 77.5 °C the \ scan shows definite
peaks every 60°, indicating a substantial amount of hexatic
bond-orientational ordering. At high temperatures longi-
tudinal scans through the same peak show a broad, diffuse
scattering profile indicative of short-range positional
order. As the sample is cooled, the width of the peak
narrows as bond-orientational order develops, suggesting
that the enhanced positional correlations are due to a
coupling to the bond-orientational order. The peak width
never approaches the resolution AQ of the spectrometer,
which is 2x 10 ~4 A~'; the positional order is always short
range. Thus the material is indeed a bulk hexatic in the S,
phase; that is, it has the positional order of a fluid and the
bond-orientational order of a crystalline solid. When the
material is cooled below about 73 °C into the SpJ phase, the
broad peaks of figure 4 and of the corresponding longitudi-
nal scan become sharper than the resolution of the
spectrometer. Thus the bulk Sj phase is actually a solid
rather than a liquid crystal.

Experiments on thin films
As discussed above, one of the attractive features of the
freestanding film technique is that one can prepare stable
films whose thicknesses vary from two molecules to
macroscopic values. Since the Birgeneau-Litster model
for three-dimensional smectic liquid crystals is based on
the Halperin-Nelson model for two-dimensional melting,
one naturally asks how the bulk smectic states evolve as
the film becomes progressively thinner. The first genera-
tion of experiments addressing this question were on
multidomain hexatic films and were conducted by Pindak
and his coworkers at Bell Laboratories and by Eric Sirota,
Peter Pershan and Moshe Deutsch at Harvard." More
recent experiments have used single-domain films of 8OSI
with thicknesses of 4 and 22 molecules.10 Figure 4 shows
results for the 22-layer film. At 80.16 °C the material is in
the Sc phase and the % scan is isotropic as expected. As
the film is cooled, angular structure develops, demonstrat-
ing that the material is going into a bond-orientationally
ordered phase. This progression parallels exactly the
three-dimensional S, -phase data shown in figure 3, except
that the bond-orientational order is much less well
developed. Measurements of the width of the diffraction
peak AQ (see figure 2) show that the material is
positionally disordered; in other words, it is a fluid. The 4-
layer film gives identical results. Thus a 22-layer film is
already thin enough to act the way this material would in
the two-dimensional limit. Again, when the film is cooled
below 72 °C, it goes into the crystalline solid Sj phase.

These thin-film experiments complete the picture.
They show that the phase sequence predicted by the two-
dimensional Halperin-Nelson theory of melting—isotrop-
ic liquid, hexatic liquid crystal, crystalline solid—does
indeed obtain. Furthermore, in 8OSI these two-dimen-

sional phases evolve into the three-dimensional phases Sc,
S[ and Sj , respectively.

Clearly, the introduction of the concept of a stacked
hexatic phase has led to the identification of the essential
microscopic symmetry that is broken in some of the
smectic phases. When molecular tilt and other degrees of
freedom are also considered, all the smectic liquid crystals
can be classified according to this scheme. The box and fig-
ure on page 55 explain this final characterization. Thus,
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Thin-film scans. A 22-molecule-thick film of
the liquid crystal 8OSI was the medium for
the angular x-ray scans that give these data.
The sequence shows the evolution from a
two-dimensional isotropic fluid (80.1 6 °C) to a
two-dimensional hexatic phase (78.29-
72.99 °C). At lower temperatures the material
forms a two-dimensional solid.10 Figure 4
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out of an apparently esoteric model of freezing in two
dimensions, the solution to one of the major unsolved
problems in liquid crystals has emerged.

Measuring orientational order
The availability of single-domain samples in the S, phase
makes it possible to characterize the bond-orientational
order quantitatively. One can do this quite generally by
performing a nonlinear least-squares fit of the ^-scan data
between 60° and 120° to the Fourier cosine series

- x) (1)

Here \ is the angle between the in-plane component of the
scattering vector Q and the magnetic field vector H. The
coefficients C6 „ measure the amount of 6rc-fold ordering in
the sample and are called harmonic amplitudes. When
the constant term in the equation is V2, each coefficient
C6n approaches 1 for perfect bond-orientational order;
that is, the equation with C6 „ = 1 is the Fourier transform
of a periodic delta function.

In fact, each of the coefficients C6 „ is a separate bond-
orientational-order parameter. Figure 5a shows the
temperature dependence of the first seven members of the
set of bond-orientational-order parameters j C6 „ |. The
data show explicitly that all of the coefficients C6 „ evolve
continuously, so the system smoothly develops first 6-fold
order, then 12-fold order, then 18-fold order and so on.
This lack of a sharp Sc-S, phase boundary is a conse-
quence of the coupling between the tilt and hexatic fields,
which induces hexatic ordering in the Sc phase.

Harmonic scaling
An astonishing result of the above analysis was the
empirical discovery10 of the simple scaling relation
C6n = Cg". Figure 5b gives the average values of the
exponents an and their standard deviations. With this
scaling, all the quantities Cl'a""up to n = 7 fall on the same
curve over the complete temperature range to within the
fitting error, with no adjustment in the amplitude.

It turns out that one can obtain a complete theoretical
understanding of the scaling of the bond-orientational-
order parameter harmonics and the series of exponents
(an | using theories of multicritical phenomena developed
to explain phase diagrams in magnets. First recall that
the bond-orientational-order parameter Wgdr) is a complex
number, <el6Hlr'>. All the higher harmonics measured by
x-ray scattering are directly related to the fundamental
order parameter by12

(2)

Because ^g is a complex number, the critical properties of
this system should be those of a system with a two-
component order parameter, such as the superfluid
transition or a magnet with two spin components (the XY
model). If one writes *6 = x + iy, it is clear from simple al-
gebra that the successive order parameters C6n, with
« = 2 , 3 , 4 , . . . , scale like (x2 - y2), (x3 - 3xy2),
4(x4 + y4) — 31*614 and so on. Each of these order param-
eters has a different symmetry and hence, according to
current ideas in the theory of critical phenomena, must
have a different scaling behavior. Indeed, earlier mea-
surements of each of these behaviors required separate
experiments.13

In mean-field theory the predicted value of an is n,
which manifestly disagrees with the experimental results.
The disagreement implies that fluctuation effects are
important. These effects can be included via the calcula-
tional techniques introduced by Kenneth Wilson and
Michael Fisher—the renormalization-group approach.
An elaborate renormalization-group calculation gives
an ~ n 4- 0.3n(n — 1). As one can see in figure 5b, this form
describes the measured exponents an remarkably well-
indeed, better than the approximations in the theory
would seem to justify.

The harmonic scaling results of the hexatic transition
theory should also apply to many other systems in which
the order parameter is represented by the real part of a
complex number. The spiral spin-density wave found in
the rare earth metal erbium is an example of such a
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system. Using neutron scattering, Sunil Sinha and his
coworkers at Ames Laboratory in Iowa were able to
measure the temperature dependence of the higher-order
harmonics of the c-axis moment of the erbium spin-density
wave up to the 17th harmonic.14 Although the erbium
data are qualitatively similar to those of figure 5a, no
quantitative comparison has been made. Future experi-
ments on similar systems could provide an excellent test of
the harmonic scaling theory. Variants of the theory that
explicitly include the quasi-two-dimensional nature of the
phase transition describe well the thermodynamic proper-
ties of the hexatic-fluid transition and should describe
equally well the phase transition behavior of the CuO2
lamellar superconductors.

Extension to two dimensions
Although the thermodynamic argument for harmonic
scaling in the critical region is valid for all dimensions, the
form of the scaling may vary. As the number of spatial di-
mensions is reduced, fluctuations become increasingly
important in a reduced volume in phase space. As we have
emphasized throughout this article, in two dimensions
these fluctuations are so large that they produce an
algebraic decay of the (formerly long-range ordered) bond-
orientational correlation functions. It is straightforward
to demonstrate that an algebraically decaying correlation
function implies that the exponents an are proportional to
re2. This is a consequence of a harmonic theory for the
phase fluctuations of the bond-orientational parameter
Wg, and implies that as the system crosses over from three
to two dimensions, the higher harmonics of the order
parameter "turn off." In other words, the fluctuations
eliminate the higher-order Fourier coefficients in equa-
tion 1 (page 57). Analysis of the thin-film data in figure 4
indicates the absence of all but the terms for which n is 1 or
2; the data are also consistent with an ~ n2.

Ming Cheng and his coworkers at the State University
of New York, Buffalo, have also seen two-dimensional
behavior.15 In a beautiful transmission electron diffrac-
tion experiment on very thin films, they were able to
measure the coefficients C6 „ for n = 1, 2, 3 and 4 in a four-
layer-thick hexatic liquid crystal exhibiting SA and SBH
phases. Figure 6 shows one of their SBH -phase electron
diffraction patterns, which exhibits clearly the character-
istic hexatic diffraction pattern. Further, the profiles are
well described by the two-dimensional model as adapted
for ra-layer systems.

The study of stacked hexatics has yielded a complete
classification of the large variety of thermotropic liquid
crystal phases. It has also demonstrated the coupling of
the order parameters of many different symmetries.
Finally, it is an excellent system with which to study
experimentally the crossover from two to three dimen-
sions and to explore the interplay between two- and three-
dimensional physics.

The liquid crystal research at MIT has been supported by the
National Science Foundation's Materials Research Laboratory
Program under contract number DMR 84-18718 and by NSFgrant
DMR 86-19234; that at Tel Aviv University has been supported by
grants from the US-Israel Binational Science Foundation and the
Israel Academy of Science and Humanities.

Electron diffraction pattern from a four-layer
film made up (by weight) of 25% 4-
proprionylphenyl-fraA75-(4-pentyl)-
cyclohexane-carboxylate in a base of n-hexyl-
4'-pentyloxybiphenyl-4-carboxylate. (Adapted
from ref. 15.) Figure 6
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