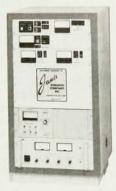
BOOKS

science for a Marxist scientist, according to Graham, is the first law: that quantitative increases of some element result at certain points in qualitative new properties. Add heat to water and the result is a qualitatively new phenomenon-steam. Mind is not matter in motion, but an entity that contains new properties that emerge at higher orders of complexity of matter than can be found at the atomic level. Graham correctly points out that a dialectical materialist must be antireductionist. He should be committed to the view that psychology is not reducible to biology, nor biology to chemistry, physics or a combination of the two.

I hope that my brief summary will not leave the reader with the impression that Graham's book is weak on details. For a historian Graham exhibits an impressive knowledge of science, philosophy and sovietology. But in spite of his mass of interesting data, the evidence for the thesis that dialectical materialism influenced the direction of Soviet research in science remains inconclusive. I hope Graham's groundbreaking study will encourage future historians and philosophers of science to provide more detailed studies of individual scientists who were committed to the philosophy of dialectical materialism.

EUGENE LASHCHYK
La Salle University

Kinetics of Nonequilibrium Low-Temperature Plasmas


L. M. Biberman, V. S. Vorob'ev and I. T. Yakubov Consultants Bureau (Plenum), New York, 1987. 483 pp. \$110.00 hc ISBN 0-306-10998-0

Plasmas are central to a number of existing and developing technologies. Although much has been written on high-temperature fully ionized plasmas, which are relevant to fusion research, comparatively little is available on low-temperature plasmas. Kinetics of Nonequilibrium Low-Temperature Plasmas ameliorates this deficiency by providing extensive consideration of the fundamental collisional and radiative processes that underlie the plasmas used for such applications as lasers, plasma chemistry, and plasma deposition and etching of thin films. These applications make use of the special properties of low-temperature nonequilibrium plasmas, such as the capability of producing population inversions of atomic and ionic states or of enhanc-

SuperOptiMag

Cryogenic Systems For Magneto-Optics

- Dewars that Sir James would've admired even when made in NEW England.
- The classic supervaritemp system with no uncertainty in temperature.
- Magnetic fields with no divergence from specs.

JANIS RESEARCH COMPANY, INC.

2 Jewel Drive, P.O. Box 696, Wilmington, MA 01887 U.S.A. Tel: (508) 657-8750 Telex: 200079 FAX: (508) 658-0349

WOO SIN ENTERPRISE, INC., SEOUL KOREA • Tel. (02) 583-5696/7

Circle number 30 on Reader Service Card

Find the small change:

2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19639	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640

The 197 Microvolt DMM detects the small change—one part in 220,000—for small change: \$620. And you can automate with its IEEE-488 option. Find out how to get a big change in your measurement capabilities. Call the Keithley Product Information Center: (216) 248-0400.

The Model 197 Microvolt DMM

Circle number 31 on Reader Service Card

Quick & Easy Superconductivity Measurements

LR-400

Four Wire AC Resistance & Mutual Inductance Bridge

Ideal for direct four wire contact resistance measurements with 1 micro-ohm resolution

Ideal for non-contact transformer method measurements where superconducting sample is placed between primary & secondary coils and flux exclusion causes a change in mutual inductance

Direct reading Low noise/low power Double phase detection Lock-in's built in

LR-4PC accessory unit available for complete IBM-PC computer interfacing

Proven reliability & performance. In use world wide.

LINEAR RESEARCH INC.

5231 Cushman Place, Suite 21 San Diego, CA 92110 U.S.A.

Phone: 619-299-0719

Telex: 6503322534 MCI UW

Circle number 32 on Reader Service Card

ing the generation of chemically reactive species. The predominance of neutral atoms and molecules, combined with the attendant myriad of excited states, makes low-temperature plasmas very complicated. Understanding their kinetics is essential to improving and extending their applications.

The book begins with an introductory chapter on basic plasma phenomena, including Debye shielding, equilibrium conditions and transport. The succeeding chapters go on to develop the theme of the book: the elementary collisional and radiative processes that exist in low-temperature nonequilibrium plasmas, and the kinetics that result. The kinetics of the population of excited states, ionization and recombination are considered in detail. One interesting and very useful chapter is on radiative transport. Radiation trapping, which is often important for weakly ionized plasmas, is thoroughly discussed. The electron energy distribution function is derived with the relevant inelastic processes included. The final chapters include brief treatments of transient effects in nonequilibrium plasmas and of the kinetics of molecular plasmas.

The book gives a useful understanding of the fundamental processes that govern low-temperature nonequilibrium plasmas. As such, it would be of value for developing a collisionalradiative model of a plasma or for quantitative spectroscopy. The lack of an index is unfortunate; however, the book contains useful appendices.

A number of topics of practical importance are covered only cursorily or not at all. Topics such as sheath effects and plasma-material interactions, which are important in, for instance, reactive-ion etching, are clearly beyond the scope of this book. Also, very little attention is given to radiofrequency plasma excitation: No specific discharge configurations are discussed.

The book would be a useful reference text for a graduate course in the fundamentals of low-temperature plasmas; the rather abbreviated derivations would make it difficult to use the book as the primary text. The authors make extensive use of energyspace diffusion models to discuss the kinetics of excited states and ionization-recombination. In doing so they provide an excellent physical picture for the onset of the departure from equilibrium in terms of competition among processes. Although the analytical techniques the authors discuss can be quite useful, they largely neglect the more powerful numerical

methods of analysis, which are now relatively easy to implement with the wide availability of computers.

There is much current interest in gaining a better understanding, thorough diagnostics and modeling, of the plasmas used in various technological applications. Despite some shortcomings, Kinetics of Nonequilibrium Low-Temperature Plasmas makes an important contribution toward achieving this objective.

JOSEPH L. CECCHI Princeton University

Laser Analytical Spectrochemistry

Edited by V. S. Letokhov Adam Hilger, Bristol, UK (US dist. Taylor and Francis. New York), 1986 [1985]. 412 pp. \$109.00 hc ISBN 0-85274-568-0

Laser Photoionization Spectroscopy

Vladilen S. Letokhov Academic, San Diego, Calif., 1987. 353 pp. \$57.50 hc ISBN 0-12-444320-6

Photoacoustic and Thermal Wave Phenomena in Semiconductors

Edited by A. Mandelis North-Holland, New York, 1987. 480 pp. \$75.00 hc ISBN 0-444-01226-5

The Institute of Spectroscopy of the USSR Academy of Sciences, located in Troitsk, outside Moscow, was established in 1968, and since its inception researchers there have been engaged in the development of new techniques of laser spectroscopy. Important results have been achieved in fields such as hole-burning spectroscopy, laser detection of single atoms and molecules, and laser cooling of atoms. They have had particularly impressive successes in ultrahigh-resolution and ultrasensitive spectroscopies. Based on their successes they have developed analytical methods that use photoacoustics, induced fluorescence and multiphoton resonance coupled to other techniques such as gas chromatography or mass spectrometry.

Laser Analytical Spectrochemistry, edited by Vladilen S. Letokhov, director of the institute, contains eight separately authored chapters presenting tutorial reviews of several laser analytical techniques that were developed at the institute. The book