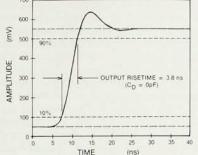
mention the Soviet-German geneticist Nikolai Timofeev-Resovsky; all these men worked in the USSR after their deportation from Germany following the end of the Second World War. The subject of the nuclear disaster of 1957–58 in the Urals is still off limits. Beria is never mentioned. And although Andrei Sakharov was rehabilitated by Gorbachev more than two years ago, Sakharov is also conspicuously absent from the book.

Mark Kuchment Russian Research Center Harvard University

Science, Philosophy, and Human Behavior in the Soviet Union

Loren R. Graham Columbia U. P., New York, 1987. 565 pp. \$45.00 hc ISBN 0-231-06442-X


There has been a resurgence of discussions concerning the relationship between science and philosophy. Experimental confirmations of quantum mechanics have in recent years forced philosophers to rethink their positions on realism and instrumentalism. More specifically, John S. Bell's famous theorem and subsequent experiments have seriously undermined David Bohm's hidden-variable models in quantum mechanics, which provided some hope for the realist view of our world. The influence of scientific theories and experiments on philosophy is unquestionable. The influence of philosophical, ethical, religious and even political theories or beliefs on the creation-and justification-of theories is more controversial. That such influences have occurred has been documented by historians and sociologists of science.

Science, Philosophy, and Human Behavior in the Soviet Union is Loren Graham's unique and impressive study of how the philosophy of dialectical materialism influenced the development of Soviet science in the cases of both theory creation and theory justification, as well of science's influence on dialectical materialism. The strength, and paradoxically also the weakness, of Graham's study is that he tries to show for every major scientific discipline how dialectical materialism usually pushed science into interesting new directions. The weakness lies in the fact that Graham's examples are, by the very nature of his project, usually sketchy. It is difficult to provide a comprehensive account when one tries to cover in 12 chapters practical-

AMP TEK

CHARGE SENSITIVE PREAMPLIFIER

A250

RUN SILENT — RUN FAST!!! A NEW STATE-OF-THE-ART

EXTERNAL FET

FET CAN BE COOLED

NOISE: < 100e*RMS (Room Temp.)

< 20e*RMS (Cooled FET)

POWER: 19 mW typical

SLEW RATE: > 475 V/µs

GAIN-BANDWIDTH f_T > 1.5 GHZ

A 2 5 0

entires:

If you are using: Solid State Detectors, Proportional counters, Photodiodes, PM tubes, CEMS or MCPs and want the best performance, try an AMPTEK CHARGE SENSITIVE PREAMPLIFIER

Send for Complete Catalog

Low noise (less than 100 electrons RMS) Low power (5 milliwatts) Small size (Hybrids) High Reliability

Radiation hardened (as high as 10' Rads) One year warranty Applications:

Aerospace Portable Instrumentation Nuclear Plant Monitoring

Imaging
Research Experiments
Medical and Nuclear
Electronics
Electro-Optical
Systems and others

AMPTEK INC.

6 DE ANGELO DRIVE, BEDFORD, MA 01730 U.S.A. (617) 275-2242

SOUTH AUSTRALIA. TOKING PTY. LTD. PD. Amerion. Analoid 2001022 AUSTRIA. AMARTICA Vinene 66-21b. BELGUIRIC ALADIDE INTO CHOISIAN V. Anhewy D02213 TND.
BRAZZI TSCHUL LTDA. SO PAUN SOUTH SERVISH STANISH AMARTICA VINENE 66-2b. BELGUIRIC ALADIDE INTO CHOISIAN SOUTH SERVISH STANISH S

Circle number 27 on Reader Service Card

QUICK-Memorize this list:

175.69	18.905	1.7868	1/1.6/	143.98
1.6523	153.47	15.097	132.69	185.36
17.546	185.98	16.264	1.3789	1.6243
154.52	19.090	15.778	197.35	16.230
188.58	129.34	174.58	19.875	1.9465
1.3876	101.09	16.790	1.9721	1.6759
1.7566	18.236	1.7805	198.67	189.20
187.43	17.647	152.78	189.36	17.654
18.347	16.154	1.5737	18.745	195.86
17.961	1.8497	15.876	191.60	17.949
16.975	186.67	175.87	15.134	145.87
1.8264	13.478	16.783	16.598	157.83
15.783	1.1654	136.56	11.387	1.6781
15.786	118.75	158.70	114.36	17.169
11.080	1.1342	178.67	10.287	1.6085
1.2136	1.8514	10.562	1.2905	191.70

The 175 Autoranging DMM can—up to a hundred readings, and it determines minimum and maximum values. Five functions and a lot more—for \$449. IEEE-488 and battery options, too.

QUICK—Call the Keithley Product Information Center:

(216) 248-0400.

The Model 175
Autoranging
DMM

KEITHLEY

Circle number 28 on Reader Service Card

now brings you two CAMAC modules to meet your signal conditioning needs. The 1501 provides the most comprehensive bridge transducer connection and calibration available from a single module. The 1402 supplies the greatest range of programmable amplification and multi-pole filter selection in a CAMAC module. Working in your system or in a DSP TRAQ-P data acquisition system, they provide unparalleled flexibility and performance.

DSP Technology
Dept. 1501-PT
48500 Kato Road
Fremont, CA 94538-7338
415-657-7555

ly all of the main branches of science in the Soviet Union.

The major potential counterexample to the thesis that philosophy, in this case dialectical materialism, had a positive effect on scientific creativity is Trofim Lysenko's banning of Mendelian genetics. For this reason Graham is particularly aggressive in his discussion of Lysenko. He correctly points out, however, that it was not dialectical materialism but its perversion by Lysenko for purposes of personal advancement that was responsible for the tragic ban. He even finds kind things to say about Lysenko as a practical agronomist. For example, concerning Lysenko's tenure as "boss" of a particular collective farm, Graham writes, "This extraordinary position, compiled with Lysenko's undisputed talents as a practical agronomist, resulted in his farm being among the severally outstanding ones of the region in terms of farm production." (It would have been interesting if in this chapter the author had discussed the role, if any, that Lysenko may have played in the Stalinengineered famine in which about 7 million peasants died on Soviet Ukrainian territory in 1933.)

I know of no better introduction to the principles of dialectical materialism and how they evolved than the second chapter of Graham's book. Graham traces the formulations of materialism from Marx and Engels to Georgi V. Plekhanov, who coined the term "dialectical materialism," and finally to Lenin, the most influential of the group. Lenin not only subscribed to the view that "all that exists is material," but also claimed that, in his words, "to be a materialist is to acknowledge objective truth, which is revealed to us by our sense organs." In the West this last statement is usually taken to be a definition of one kind of realism and not materialism. Many Western philosophers as a result accuse Lenin of confusing the two. Graham, consistent with his sympathetic treatment, claims that Lenin must have been aware of the difference at least by the time he wrote his Philosophical Notebooks, which were published posthumously. I do not think that this modification gets Lenin off the hook with respect to his more influential Materialism and Empirio-Criticism (1905).

Discussing the implications of the concept of matter in the chapter on quantum mechanics, Graham says, "Lenin's assertion that a dialectical materialist must recognise the existence of matter separate and independent from mind, while not inherently contradictory to quantum mechanics,

could be regarded as at least uncongenial to the Copenhagen school's disinclination to comment upon matter in the absence of sensible measurement." I would think that in view of recent experimental results that strongly confirm quantum mechanics, one could use a stronger word than "uncongenial." It is also worth mentioning that a new interpretation of the nature of matter was put forth by Bonifatti M. Kedrow, head of the history of science section of the Soviet Academy of Science, at the 5th International Congress of Logic, Methodology and Philosophy of Science in London, Ontario, in 1975. There, in a symposium on the nature of matter. Kedrow did not give a philosophical definition of matter but proceeded to highlight the results of each of the sciences. His message was that for a specification of the nature of matter and materialism one has to go to science and not to philosophy: Dialectical materialism does not precede science, but follows it. If one takes this view of matter it is hard to see any possibility of conflict ever arising between science and materialism.

In the chapter on quantum mechanics Graham discusses in some detail the views of three physicistphilosophers: Vladimir Fock, Dimitri Blokhintsev and Mykhailo Omel'ianovskii. In his V. I. Lenin and Twentieth-Century Physics Omel'ianovskii, the leading interpreter of quantum mechanics in the 1950s, claimed that the correct interpretation of quantum mechanics began with a recognition of microparticles, not with problems of cognition. "And so," he said, "we have come to the conclusion that Heisenberg's uncertainty principle, like Bohr's principle of complementarity, is a generalized expression of the facts of the dual (corpuscular and undulatory) nature of microscopic objects"-not, as some would say, a limitation on our knowledge, but a direct result of the nature of microobjects. From the 1950s to the 1970s he became a dominant positive force and left a lasting imprint on studies in the history and philosophy of science, first in his native Ukraine and then for more than 20 years in Moscow.

Besides the concept of matter, the other constraining elements of dialectical materialism are the laws of dialectics. By dialectics, says Graham, Engels meant the laws of all motion in nature, history and thought. Engels called them the Law of the Transformation of Quantity into Quality, the Law of the Mutual Penetration of Opposites, and the Law of the Negation of the Negation. The most important constraining element in

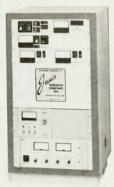
BOOKS

science for a Marxist scientist, according to Graham, is the first law: that quantitative increases of some element result at certain points in qualitative new properties. Add heat to water and the result is a qualitatively new phenomenon-steam. Mind is not matter in motion, but an entity that contains new properties that emerge at higher orders of complexity of matter than can be found at the atomic level. Graham correctly points out that a dialectical materialist must be antireductionist. He should be committed to the view that psychology is not reducible to biology, nor biology to chemistry, physics or a combination of the two.

I hope that my brief summary will not leave the reader with the impression that Graham's book is weak on details. For a historian Graham exhibits an impressive knowledge of science, philosophy and sovietology. But in spite of his mass of interesting data, the evidence for the thesis that dialectical materialism influenced the direction of Soviet research in science remains inconclusive. I hope Graham's groundbreaking study will encourage future historians and philosophers of science to provide more detailed studies of individual scientists who were committed to the philosophy of dialectical materialism.

EUGENE LASHCHYK
La Salle University

Kinetics of Nonequilibrium Low-Temperature Plasmas


L. M. Biberman, V. S. Vorob'ev and I. T. Yakubov Consultants Bureau (Plenum), New York, 1987. 483 pp. \$110.00 hc ISBN 0-306-10998-0

Plasmas are central to a number of existing and developing technologies. Although much has been written on high-temperature fully ionized plasmas, which are relevant to fusion research, comparatively little is available on low-temperature plasmas. Kinetics of Nonequilibrium Low-Temperature Plasmas ameliorates this deficiency by providing extensive consideration of the fundamental collisional and radiative processes that underlie the plasmas used for such applications as lasers, plasma chemistry, and plasma deposition and etching of thin films. These applications make use of the special properties of low-temperature nonequilibrium plasmas, such as the capability of producing population inversions of atomic and ionic states or of enhanc-

SuperOptiMag

Cryogenic Systems For Magneto-Optics

- Dewars that Sir James would've admired even when made in NEW England.
- The classic supervaritemp system with no uncertainty in temperature.
- Magnetic fields with no divergence from specs.

JANIS RESEARCH COMPANY, INC.

2 Jewel Drive, P.O. Box 696, Wilmington, MA 01887 U.S.A. Tel: (508) 657-8750 Telex: 200079 FAX: (508) 658-0349

WOO SIN ENTERPRISE, INC., SEOUL KOREA • Tel. (02) 583-5696/7

Circle number 30 on Reader Service Card

Find the small change:

2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19639	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640
2.19640	2.19640	2.19640	2.19640	2.19640

The 197 Microvolt DMM detects the small change—one part in 220,000—for small change: 620. And you can automate with its IEEE-488 option. Find out how to get a big change in your measurement capabilities. Call the Keithley Product Information Center: (216) 248-0400.

The Model 197 Microvolt DMM

KEITHLEY

Circle number 31 on Reader Service Card