Janis Quality!

- Joint effort of Janis Research and Princeton Applied Research
- Fields of 5, 7 and 9T (or higher) with temperature variation 1,5-300 K.
- Complete turnkey systems with temperature and field controllers and all VSM electronics.

JANIS RESEARCH COMPANY, INC.

2 Jewel Drive P.O. Box 696 Wilmington, MA 01887 Tel: (508) 657-8750 Telex: 200079 Fax: (508) 658-0349

APS Show - Booth #212

Circle number 119 on Reader Service Card

- * Optical Communications
- * Wavelength Demultiplexing
- * Fibre-Optic Sensing
- * Spectroscopy
- * Intra-Cavity Etalons
- * Rugged, Compact, High Stability
- * Capacitatively Stabilised
- * Fibre Pigtails/Connectors
- * Stand-Alone Module
- * Digital and Analog Interface

Queensgate Instruments Ltd

Silwood Park, Ascot, Berkshire SL5 7PW, England Tel. (0990) 872387 Telex 846671 QIQIQI Fax. (0990) 872317

Tel: (49) 6151.88060 Fax: (49) 6151.84173 US: Tecoptics 1760 Grand Avenue, Merrick New York 11566 Tel: 516.379.1203 Fax: 516.546.7031

FRG: LOT Im Tiefen See 58, D-6100 Darmstadt

continued from page 15 to take into account different practices with regard to copying fees or licenses.

Reference

1. H. H. Barschall, J. R. Arrington, Bull. Am. Phys. Soc. 33, 1437 (1988).

HENRY H. BARSCHALL

University of Wisconsin, Madison

Bubble Chamber Photoomission

In our article "Pions to Quarks: Particle Physics in the 1950s" (November, page 56), through an oversight, we failed to mention that the photographs on page 61 of Donald Glaser's notebooks were taken from Peter Galison's contribution, chapter 14, to the book Pions to Quarks, which we edited (Cambridge U. P., New York, to appear in 1989), and from Galison's more extensive treatment, "Bubble Chambers and the Experimental Workplace," in Observation, Experiment and Hypothesis in Modern Physical Science (P. Achinstein, O. Hannaway, eds., MIT-Bradford P., Cambridge, Mass., 1985). LILLIAN HODDESON

> University of Illinois, Urbana-Champaign and Fermilab Batavia. Illinois LAURIE BROWN Northwestern University Evanston, Illinois MAX DRESDEN State University of New York, Stony Brook

12/88

Gibbs and Mandelbrot at Yale

In his Opinion piece (January, page 71) Benoit Mandelbrot offers a non-Gibbsian approach to the definition of temperature and its fluctuation. He notes that "for small systems the statisticians grant that a fog of uncertainty is simply unavoidable." This limitation creates difficulties for chemistry and all of semiconductor physics, because these sciences and others often deal with single particles in thermal and diffusive contact with an appropriate reservoir. That is why the Gibbs approach is so widely followed.

Josiah Willard Gibbs gave us a brilliant and elegant logical structure suitable for the treatment of single-(and many-) particle problems in statistical mechanics: Here the chemical potential and the temperature make their natural entrance. The

RAY TRACING

on your PC, XT, AT, PS/2 or compatible!

BEAM TWO

for coaxial systems:

- · lenses, mirrors, irises · flats, spheres, conic sections
- exact 3-D monochromatic trace convenient built-in table editor • 2-D system and ray layouts
- diagnostic plots Monte-Carlo spot diagrams
- · least-squares optimizer · CGA, EGA, VGA,

& Hercules

\$89 postpaid if prepaid, quantity 1–9 CA add 7% sales tax

BEAM THREE

for advanced work:

- all the above functions 3-D optics placement
 - tilts and decenters polynomials & torics
 - diffraction gratings refractive index tables
 - CGA, EGA, VGA, & Hercules

\$289 postpaid if prepaid, quantity 1–9 CA add 7% sales tax

STELLAR SOFTWARE

P.O. BOX 10183 BERKELEY, CA 94709

Circle number 121 on Reader Service Card

Sensor Interchangeability Into The 21st Century

Scientific Instruments, Inc. Model Si410

SILICON DIODE SENSOR

Features

- Interchangeability ± 0.1K or better (dependent upon accuracy range
 - specified)
- •Long-Term Availability
- Repeatability ± 0.05K
- Standard &

Custom Configurations

Temperature Range 1.5K to 450K

SCIENTIFIC SI INSTRUMENTS

Scientific Instruments, Inc.

4400 West Tiffany Drive Mangonia Park, W. Palm Beach, FL 33407 Telephone. (407) 881-8500 Telex: 51-3474 • FAX: (407) 881-8556

Circle number 122 on Reader Service Card

Problem-Solving Handbook for Physicists, Engineers and Students..

PHYSICS VADE MECUM

Herbert L. Anderson, Editor-in-Chief

va-de me-cum (va'dē mē'kəm, va'dē mā'-) n., pl. vade mecums. 1. A useful thing that a person constantly carries with him. 2. A book, such as a guidebook, for ready reference. [Lat., go with me.]*

Found in the offices, laboratories, libraries, classrooms, and briefcases of scientists and engineers, this quick-reference tool saves time and effort in solving a wide range of scientific and technical problems.

Organized to make data available with minimal searching, PHYSICS VADE MECUM is a compact, comprehensive storehouse of formulas, numerical data, definitions and references that are grouped by discipline. A General Section contains fundamental constants, the SI units and prefixes, conversion factors, magnitudes, basic mathematical and physics formulas, formulas useful in practical applications, and a list of physics data centers.

*Source: The American Heritage Dictionary, 2nd ed. (Boston: Houghton Mifflin Company, 1982), p. 1134.

Contents

General Section, H.L. Anderson; Acoustics, R. Bruce Lindsay; Astronomy and Astrophysics, Laurence W. Fredrick; Atomic Collision Properties, Clarence F. Barnett; Atomic Spectroscopy, Wolfgang L. Wiese and Georgia A. Martin; Biological Physics, Hans Frauenfelder and Michael C. Marden; Cryogenics, Russell J. Donnelly; Crystallography, George A. Jeffrey; Elementary Particles, Robert L. Kelly; Energy Demand, Arthur H. Rosenfeld and Alan K. Meier; Energy Supply, Hans A. Bethe; Fluid Dynamics, Russell J. Donnelly; High Polymer Physics, Ronald K. Eby; Medical Physics, Thomas N. Padikal; Molecular Spectroscopy and Structure, Marlin D. Harmony; Nuclear Physics, Jagdish K. Tuli and Sol Pearlstein; Optics, John N. Howard; Plasma Physics, David L. Book; Rheology, Hershel Markovitz; Solid State Physics, Hans P.R. Frederikse; Surface Physics, Homer D. Hagstrum; Thermophysics, Yeram S. Touloukian.

1981 • 340 pp • ISBN 0-88318-289-0 • LC: 81-69849 • Softcover: \$25.00 (20% discount available to members of AIP Member Societies)

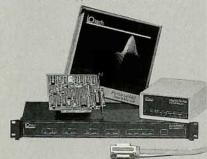
New York, NY 10017

Send orders to: American Institute of Physics
Marketing Services
335 East 45th Street

To place credit card orders, call 1-800-AIP-PHYS; in New York State, call 212-661-9404.

IEEE 488 Solutions

- 386, PS/2, Macintosh, HP, SUN & DEC


 IEEE device drivers for DOS and UNIX®
- IEEE control for Lotus 1-2-3 & Symphony PC menu-driven analysis software
- IEEE extenders, expanders & buffers
 IEEE converters to RS-232, RS-422, SCSI,
- modem, Centronics, analog I/O & digital I/O

(216) 439-4091

Telex 6502820864 • Fax (216) 439-4093 IOtech, Inc. • 25971 Cannon Road Cleveland, Ohio 44146

Call for your FREE Technical Guide Demo disks & application notes available

Circle number 123 on Reader Service Card

AIP STYLE MANUAL

This valuable AIP STYLE MANUAL serves both as a practical reference for experienced authors and as a thorough compendium for the novice. Authors, editors and publishers will find this manual a helpful guide to consistent and acceptable manuscript preparation.

ORDER YOUR STYLE MANUAL TODAY!

Price: \$7.50 prepaid (\$2.00 billing charge if not prepaid). ISBN 0-88318-001-4. 56 pages. Illustrated. 81" × 111".

Send all orders for the AIP STYLE MANUAL to: American Institute of Physics, Department BN, 335 East 45 Street, New York, NY 10017.

extraordinary power of the Gibbs viewpoint became apparent only after quantum theory was formulated. The canonical example is the Fermi-Dirac distribution, which can be derived from first principles in a few equations, without fog. I give the references below1 not because they are particularly original, but for the convenience of readers who remember, for example, the incredibly complex apparatus of the Darwin-Fowler method and wish to compare it with an exposition of the Gibbs method applied to the Fermi-Dirac problem.

Reference

1/89

1. C. Kittel, Introduction to Solid State Physics, 6th edition, Wiley, New York (1986), pp. 616-618. C. Kittel, H. Kroemer, Thermal Physics, 2nd edition, Freeman, New York (1980), pp. 1-4.

CHARLES KITTEL University of California, Berkeley

MANDELBROT REPLIES: I have no love for Darwin-Fowler, and no quarrel with Gibbs-even when I'm at IBM.

BENOIT B. MANDELBROT IBM Thomas J. Watson Research Center Yorktown Heights, New York 1/89

Should SSC Have Overseers Overseas?

Just a decade ago, the US General Accounting Office invited this lone low-energy physicist to take part in a roundtable discussion on the future of high-energy accelerators. The tenor of the discussions was cordial enough until the subject came up of future machines of very large size, and the methods by which they would be managed and funded.

It seemed obvious that eventually the problem that would be faced would be the same one that faced our European colleagues in the 1950s and forced them to combine forces in CERN—namely the impracticality of a one-nation effort. This eventuality was not very congenial to the views of my colleagues, and when I pressed for the idea of international management and funding in the future, there was a decided chill around the table. and I found myself a minority of one. There were abundant expressions of approval for the idea of international cooperation, but none at all for international control. It was not difficult to infer that I was stepping on the very sensitive toes of people around the table who were directors of very large facilities and who did not relish the prospect that their successors might be answerable to an international board of directors.

As I have followed the debate on the SSC, and have questioned some of its key advocates on the question of joint international control of the SSC in the framework, perhaps, of a CERN_ Pacific, I have detected the very same chill I felt in the GAO offices ten years ago. Despite the loftiness of the goals that invariably find expression in the SSC debate, some largely unspoken ambitions for personal power seem to be driving the project toward unilateral funding by American taxpayers and unilateral control by an American director. If there are good reasons for such unilateralism, now is the time for them to come out.

LAWRENCE CRANBERG 11/88 Austin, Texas

Builders of Weapons vs Builders of Minds

The alarming news story "Five Years After 'A Nation at Risk' US Schools Still Seek Better Grades" (June 1988. page 50) acknowledges the central problem: "The need for better teachers is inescapable." On page 72 of the same issue (from the report on AIP's 1986 employment survey) is the statement "[Physics] bachelors working for defense contractors had a median monthly salary of \$2315, while those teaching earned \$1350."

Any society that attaches nearly twice as much value to weapons as to the minds of its children deserves to have a problem (and I include Canada in this).

ROY L. BISHOP Acadia University 6/88 Wolfville, Nova Scotia, Canada

Asia's Academic Achievers

In the news story "Five Years After 'A Nation at Risk' US Schools Still Seek Better Grades" (June 1988, page 50), the graphs comparing US students with their counterparts in other countries are somewhat misleading. The European countries, for example, not to mention the Asian countries, have educational systems and philosophies different from ours. The comparisons with Hong Kong form-6 or form-7 students are especially misleading and unjustifiable. It defies my imagination to explain how Hong Kong students take a quantum leap from last place in 9th-grade science to first place in 12th-grade physics in three short years.

Form-6 and form-7 physics students in Hong Kong, as a rule, take calculus, calculus-based general physics