## SPEAKEASY\* **SPEAKS**

For physicists who want to use computational tools put together for physicists by physicists. For researchers who want to concentrate on the mathematics of a problem rather than learning to program. For fast accurate

Speakeasy meets your needs! Speakeasy is a high level problem solving tool that has been used for many years by physicists in laboratories and universities throughout the world. It is a well tested system that enables you to bring together the tools you need to carry out exploratory calculations and rapidly analyze data. Matrix algebra, interactive graphics, and the many special functions used by physicists combine with a natural language to provide a truly interactive environment in which you can concentrate on your calculations rather than the mechanics of running a

The same Speakeasy is available for IBM computers with TSO and CMS, for DEC VAX's under VMS and Micro VMS, and for Micro computers using MS-DOS and PC-DOS. You can even transfer results from one type of computer to another to exploit specific machine capabilities.

Want to learn more about the package that is already satisfying many of your colleagues?

Speakeasy **Computing Corporation** 222 west Adams street

Chicago, IL 60606 312.346 2745

Numerical Algorithms Group Ltd. Mayfield House, 256 Banbury Road Oxford OX2 7DE, United Kingdom, 0865 511245 tium [On the revolutions of the heavenly spheres]. Currently, Swerdlow is writing the first volume of an introductory history of mathematical astronomy from Ptolemy to Copernicus. (The second volume will cover the period from Kepler to Newton.)

Swerdlow received a BA in music and history from the University of California, Los Angeles in 1964, and an MA in music in 1967 and a PhD in medieval studies in 1968, both from Yale.

-MATTHEW SIEGEL

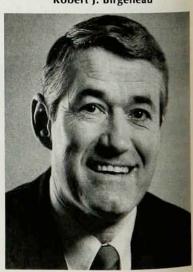
## AAPT TOP HONORS AWARDED TO FRENCH AND BIRGENEAU

At its joint winter meeting with The American Physical Society in San Francisco, the American Association of Physics Teachers presented a full complement of awards and honors. The Oersted Medal, AAPT's highest honor, was presented to Anthony P. French of MIT. Robert J. Birgeneau, also of MIT, delivered the 48th Richtmyer Memorial Lecture; five distinguished service citations were given; and AAPT members who received US Presidential awards for excellence in science and mathematics teaching were publicly recognized at the meeting.

According to the Oersted Medal citation, French's well-known series of introductory textbooks "played a role similar to that of the Feynman lectures-buttressing the level of understanding of the teachers in preparation for instructing their students." Before coming to MIT in 1962, French was a nuclear physicist with strong interests in undergraduate education and the history of physics. He arrived at MIT on an invitation to spend a semester at the newly created science teaching cen-When the semester ended, French accepted an offer to remain at MIT working on science education.

In his early years at MIT the main objective for French and his col-

Anthony P. French




leagues was to infuse the undergraduate program-which then consisted almost entirely of classical physicswith atomic physics, quantum mechanics and relativity. He wrote a series of textbooks: Special Relativity (W. W. Norton and Co., 1968), Newtonian Mechanics (Norton, 1971), Vibrations and Waves (Norton, 1971), and Introduction to Quantum Physics (Norton, 1978, co-authored with Edwin F. Taylor). These books, he feels. did a good job of filling the voids that he had identified in the undergraduate physics curriculum.

French is currently "going to bat again," trying to reinvigorate the freshman curriculum, which has begun to suffer from some of the same problems as it did in the early 1960s. As he noted in his acceptance address. "there seems to be a relentless tendency for curriculum innovations to decay exponentially." He also discussed the merits of teaching physics from a historical perspective and of creating undergraduate curricula that are truer to "our current picture of the physical world."

French received his BA from the University of Cambridge in 1942. After work in the Cavendish Laboratory and with the British Mission to Los Alamos during World War II, he completed his PhD in physics at

Robert J. Birgeneau

