RICHARD FEYNMAN AND
CONDENSED MATTER PHYSICS

During the mid-1950s Feynman's interests concentrated
on problems in condensed matter, including liquid helium,
rofons, polarons and superconductivity.

David Pines

From 1953 to 1958 Richard Feynman worked primarily on
problems in condensed matter physics. Of the 14 scientific
papers he published during this period, ten are devoted to
the physics of liquid helium, one discusses the relation
between superconductivity and superfluidity, and one
deals with the motion of slow electrons in polar crystals,
the “polaron” problem; the remaining two describe work
Feynman had carried out on quantum electrodynamics
and hadron physics earlier at Cornell. He brought to the
condensed matter problems the same remarkable original-
ity and physical insight that characterized his earlier
work on quantum electrodynamics and the path integral
method, and through his contributions he made a lasting
impact on the subfields of low-temperature physics and
statistical mechanics.

Here I shall focus primarily on his contributions to
the theory of liquid helium. Because they offer good
insight into how Feynman approached a new problem, I
shall also discuss briefly his ideas about superconductivity
(which for Richard was “the one that got away”), his work
on polarons and his lectures on statistical mechanics.

About 35 years ago, the condensed matter and low-
temperature community of theorists was a small one; we
all knew one another personally, listened to one another’s
lectures and discussed problems together whenever we
met. Where possible, I shall try to convey some sense of
what it was like to have had Richard Feynman as a
member of that community.

However, just as it is not possible to capture in words
the experience of listening to Feynman discuss his
research, it also is not possible to capture the flavor of his
}vritben work. Reading Feynman is a joy and a delight, for
in his papers, as in his talks, Feynman communicated very
directly, as though the reader were watching him derive
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the results at the blackboard. Thus, for those of us who
had the pleasure of knowing Feynman, his papers bring
vividly to life those discussions and lectures. He is explicit
about how he has formulated the problem and what
methods he has tried; he makes no attempt to gloss over
difficulties; and he takes the reader fully into his
confidence on such matters as research strategy, physical
pictures vs mathematical calculations, unsolved aspects of
a problem, promising approaches to their solution and so
on. I cannot encourage the readers of this article too
strongly to go forth and read the original; there is no
substitute.

Liquid helium theory prior to 1953

To put Feynman'’s contributions to our understanding of
liquid helium into perspective, it is useful to recall the
work of Fritz London, Lazlo Tisza and Lev Landau.
London' proposed that the A transition between normal
liquid helium, Hel, and the superfluid liquid, He II, at
2.19 K had its physical origin in the formation of a Bose
condensate, a state in which all the atoms in the liquid
would be in a single quantum state at absolute zero. The
mechanism was analogous to the condensation of an ideal
Bose-Einstein gas. Tisza® proposed a phenomenological
two-fluid model to explain the behavior of He II, consisting
of a superfluid component of density p. that flowed
without resistance and was the sole component at absolute
zero, and a normal component of density p, that resem-
bled an ordinary liquid or even a gas. The proportion of
normal fluid increased with increasing temperature until,
at the A point, p, was 0 and p, was p, the helium density.
Landau? arrived at a similar point of view by developing a
theory of quantum hydrodynamics, in which the normal
fluid corresponded to a gas of two kinds of interacting
excitations: phonons, which at long wavelengths are the
usual quantized sound waves of a compressible liquid, and
rotons, short-wavelength excitations (corresponding to a
momentum p—p,~2 A ') possessing a finite energy A
(~10 K). Landau obtained the explicit form of the roton
spectrum by analyzing early experiments on specific heat

PHYSICS TODAY  FEBRUARY 1989 61



and second sound in He II; his proposed spectrum had the
form shown in figure 1.

Feynman remarked that London’s idea “could be
criticized on the grounds that the strong forces of
interaction between the helium atoms might make the
ideal-gas approximation even qualitatively incorrect,”?
while “Tisza’s view is frankly phenomenological”?
further, “the role of statistics in [Landau’s] arguments is
not clear,” ® and, “since the rotons appear to correspond to
only a few atoms, a complete understanding of the roton
state can therefore only be achieved by way of an atomic
viewpoint.” Feynman then suggested that “a more
complete study of liquid helium from first principles
might attempt to answer at least three important ques-
tions: (a) Why does the liquid make a transition between
two forms, He I and He II? (b) Why are there no states of
very low energy, other than phonons which can be excited
in helium II (i.e., below 0.5 K)? (¢) What is the nature of
the excitations which constitute the ‘normal fluid compo-
nent’ at higher temperatures, say from 1 to 2.2 [K]?”
With these words Feynman described his research pro-
gram on helium, a program he carried to completion
during the period 1953-57.

An atomic theory of the A transition

To demonstrate that the strong interaction between
helium atoms would not change the central features of the
Bose condensation proposed by London, Feynman drew
upon his space-time approach to quantum mechanics® to
write the exact partition function as an integral over
trajectories.’ He used this expression to examine the
character of the most important trajectories and conclud-
ed that despite the nearly hard-sphere character of the
atomic interaction, the motion of a given atom would be
little affected by the motions of others; the latter atoms
would simply move out of its way, and so contribute to its
effective mass, but would otherwise affect its motion little.
Feynman was thus led to an approximate form of the
partition function, which he analyzed in some detail to
show that as the temperature is lowered, there must occur
a transition that depends in an essential way on the Bose
statistics of the helium atoms and that resembles closely
the third-order transition (specific heat continuous, but
possessing a discontinuous slope) found for the ideal Bose
gas. He further noted that it would not be difficult to
obtain a transition temperature of approximately 2 K and
that the geometric correlations he neglected would likely
turn the transition into a second-order one, in agreement
with experiment.

Thirty-two years passed before Feynman’s program
was realized; in 1985 David Ceperley and Eugene Pollock’
used a Cray-1 computer to carry out the necessary path in-
tegrals and obtained excellent agreement with experi-
ment for the specific heat (and other properties) through
and below the A transition.

Viewed in perspective, this first paper by Feynman on
liquid helium displays clearly that blend of magic,
mathematical ingenuity and sophistication, and physical
insight that is almost uniquely Feynman’s. In reading
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this and his later papers one is struck by how differently
Feynman’s mind worked from that of other great physi-
cists who studied—and in totally different ways solved—
the same problem. Feynman took a very hands-on, direct
computational point of view; Lars Onsager relied on field
theory and Landau on extremely general arguments. Yet
all came in the end to similar conclusions.

Feynman on low-lying excited states

Feynman followed the work discussed above with a paper
in which he examined the nature of the ground-state
wavefunction of liquid He II and the character of the low-
lying excitations. This paper is a tour de force in that it
contains only a single equation (for the changes in free
energy when a He* atom is replaced by He®); rather it
contains a series of closely reasoned arguments that led
Feynman, and lead the reader, to the conclusion that
because liquid He* obeys Bose statistics, there can be no
low-lying excitations other than longitudinal phonons.

He began the paper with a qualitative description of
the ground-state wavefunction, noting that if one freezes
the motion of all the atoms at a given time, the
wavefunction amplitude is negligible when any two atoms
overlap (because of the strong hard-core-like repulsion)
and is a maximum when a given atom is at the center of
the “cage” formed by its neighbors. He then showed that
extremely-low-energy excited states must involve large
groups of atoms, and that compressional waves obeying a
dispersion relation w = sq (where w is the frequency, s the
sound velocity and g the wavevector) give a true mode of
excitation. He demonstrated that this situation would not
arise for an ideal Fermi gas or a classical (Boltzmann) gas,
in both of which single-particle excitations yield the
dominant low-lying mode. He clinched his case by
showing that low-lying single-particle excitations cannot
exist for a Bose liquid, because in this system the motion of
agiven atom from one location to another is “merely an in-
terchange of which atom is which” and “cannot change
the wavefunction.” Feynman went on to examine the
possible nature of “higher energy” excitations correspond-
ing to the motion of a single atom or a small group of
atoms, and argued that these might well correspond to
Landau’s rotons. He concluded the paper by introducing
some of the themes to which he would return in his
subsequent papers: the existence of a critical velocity for
superfluid flow, and the motion of a small sphere or of a
He? atom in the liquid.

A wavefunction for phonons and rotons

In the third paper of the series,® Feynman extended the
physical arguments of the second to show that the
wavefunction that represents an excitation in He IT must
be of the form

lpexc = \l,nz f(r!] (la}
J

where W, is the ground state wavefunction, f is some
function of position, r, and the sum is over all the atoms.
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He then determined the form of f(r) and the corresponding
excited-state energy using the variational principle. He
found f(r) = exp(iq-r), so that for an excitation of momen-
tum q the wavefunction® is

Ver = Vo Yexpliqr)) =p,; ¥, (1b)
-

while the corresponding energy is
E, = q*/2mS, 2)

Herep," isthe Fourier transform of the density, p(r), while
S, the Fourier transform of the two-particle correlation
function, may be written as

Sy = Vol pg py|Vor/N 3)

where N is the number density of helium atoms. In this
form it is seen that S, is the liquid structure factor that de-
termines the elastic scattering of neutrons or x rays and
hence can be determined experimentally; for large g it
approaches unity, while for small g, since p, describes a
phonon, it takes the form S, = q/2ms, where s is the sound
velocity. As shown in figure 2, for values of g~2 A ', S,
reaches a maximum, so that the corresponding value of
the excitation energy, shown in figure 1, possesses a local
minimum; the excitations in the vicinity of this minimum
are Landau’s rotons. Their energy A is, however, too
large—some 18 K instead of the roughly 9.6 K that
Landau found would fit the specific heat and second-sound
velocity measurements. Feynman found this result dis-
couraging, and attributed it to the inaccuracy of the
wavefunction (equation 1b) in this momentum region.
Feynman went on in this paper to consider the
thermodynamic properties of He II based on his form for
the excitation spectrum, noting (quite correctly) that as
one goes to temperatures near the A point, the number of
excitations becomes sufficiently large that their interac-

Elementary excitation spectrum of liquid helium Il as
computed by Feynman® (blue), Feynman and Cohen’? (red),
and the FC spectrum as corrected by Manousakis and
Pandharipande® (green). The spectrum as measured by
Woods and Cowley' is also shown (black). Figure 1

tions must be taken into account in any correct calcula-
tion. He then considered the motion of the fluid as a
whole, noting that for irrotational motion the wavefunc-
tion must be of the form

Y=y, [exp[iES(rJ)]

(4)

where S(r) is some function of position, and the velocity of
the fluid is given by

v.(r)=VSr)/m (5)

so that the motion is indeed irrotational, that is,
Vxv, =0. He pointed out that one can have velocity
fields that are not curl free, provided one considers regions
that are not simply connected, as in a torus, because S then
need not be single valued; he further remarked that under
these circumstances, states of angular momentum in
multiples of N#i become possible—a clear indication that
he was beginning to think about vorticity.

On considering excitations in a moving fluid, Feyn-
man obtained the familiar result £ = E_, + q-v,, where v,
is the superfluid velocity, and used this to establish the
relation between his excitations and the normal-fluid
density, p,,. He obtained the Landau results, and shared
with the reader his unease about what the mathematically
correct separation of the current into two parts is, using a
gas of interacting rotons moving in a background fluid to
illustrate his concern about how this separation is to be ac-
complished.

In the process of examining excitations in the moving
fluid, Feynman identified a further problem with his
excited-state wavefunction: It does not lead to particle
conservation when one forms a wave packet to describe an
excitation that carries current #iq/m and drifts at a group
velocity V, E, (the roton, for which the group velocity is
vanishing, being an extreme example). He therefore
proposed a qualitative improvement in his wavefunction,
in which the return flow of the background liquid about a
moving excitation acts to conserve particles. This back-
flow, he noted, should be dipolar at large distances from
the excitation, and the coupling of, for instance, the roton
to this return field should both lead to a lower roton
energy and provide a mechanism for roton-roton interac-
tion. He proceeded to estimate the strength of the roton-
roton interaction in order to demonstrate that such an
interaction should lead to a correction of the Landau
expression for the normal-fluid density, and hence should
influence the calculation of the A point. He further noted
that A would decrease with pressure (thus providing a
mechanism for phonon-roton interaction) and that the
liquid would shrink if the number of rotons were
increased. Feynman's arguments were well founded, and
not a little prophetic. Some 25 years were to pass,
however, before a more accurate theory of the conse-
quences of roton-roton interactions was developed.'"

Feynman-Cohen wavefunction and backflow

Feynman and his student Michael Cohen took up the
problem (posed by Feynman at the end of his third paper
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in the series) of finding a better wavefunction to describe
rotons, using as a basic building block the incorporation of
backflow into the trial wavefunction.'® As a trial problem
they first considered the motion of an impurity that had
the same mass m as He", experienced the same forces and
was not subject to Bose statistics. The trial wavefunction
they chose for the motion of this impurity incorporated the
backflow of the surrounding liquid through a function g(r):

iy glr,—ra }] (6)

J#A

W, =W,exp[ig-r, |exp

where g(r) had the dipolar form Aq-r/r®, which it will
possess at large distances. Using the variational principle,
they determined A to be about 3.8 A-“ (close to the classical
value for perfect backflow, 3.6 A?) and the impurity
effective mass to be 1.54 m not far from the hard-sphere
value of 1.5 m. They therefore took for the excited-state
wavefunction a symmetrical version of equation 6:

Wee = W,y explig-r,Jexpi glr;) (7a)
o J#k

gw,,[z explig'r,) |1+ iZg(rJ,,)” (7h)
4 7k

where g(r) = Aq-r/r®. The resulting energy spectrum was
by no means easy to calculate, involving as it did lengthy
numerical calculations that depended on both two-body
and three-body correlation functions. As may be seen in
figure 1, it led to a considerably improved value for the ro-
ton energy (A=11.5 K).

Following their seminal work on the phonon-roton
spectrum, Feynman and Cohen took up the question of
measuring the excitation spectrum directly by studying
the energy losses of monoenergetic neutrons scattered
from liquid HelIl. They showed' that most of the
scattering at a fixed angle would result from production or
annihilation of a single excitation from the condensate, so
that one would expect to observe narrow peaks in the
spectrum of scattered neutrons, superimposed on a broad
background associated with energy losses in which two or
more excitations are produced. They dealt in some detail
with effects of finite temperature, instrumental resolution
and linewidth. Their work not only accelerated substan-
tially the experimental effort to measure this spectrum,
but was singularly successful in setting forth, in advance
of the first experiment, the major features of the neutron
scattering experiments'* that are responsible for our
present understanding of the excitation spectrum.

What is a roton?

Feynman and Cohen further proposed a physical picture
of the roton based on their trial wavefunction—namely,
that it resembled a classical vortex ring of such small
radius that only one atom could pass through its center,
with the backflow describing a slow drift of atoms
returning for another passage through the ring. Charles
Aldrich and I subsequently showed that this rather poetic
picture is not quite right: A roton should rather be
thought of as a He' quasiparticle and its associated
backflow field, of mass m* ~ 2.8 m, moving in an attractive
potential well of energy — 2 K, which originates in its
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coupling to the background density fluctuations of the
liquid. It is the combination of changes in the strength of
that momentum-dependent potential energy (which has
its origin in the particle interactions responsible for the
pair-correlation function) with the p* variation of the
quasiparticle energy that is responsible for the minimum
in the E(p) curve.'” It is, I believe, a measure of
Feynman's openness and willingness to listen to others
that although he was extremely fond of his vortex-ring
picture (it figures in all his papers on the excitation
spectrum), he evidenced no great hesitation in abandoning
it as I discovered in a conversation with him after a
colloquium I gave at Caltech in 1978. In that colloquiumI
had described the work that Aldrich and I had dong;
Feynman told me that he liked our work and that our
roton picture seemed to be the right one.

Finally, when more careful integrations using the
Feynman-Cohen wavefunction are carried out, and a sign
error in one of their integrals is corrected, their results for
the short-wavelength spectrum turn out to be less
accurate than they reported. The mistake was discovered
some 27 years later by Efstratios Manousakis, who was
then a graduate student at the University of Illinois,
Urbana-Champaign, working with Vijay Pandharipande
on an improved variational wavefunction for excitations
in liquid He®. As figure 1 shows, the corrected'® Feyn-
man-Cohen result is sufficiently far off the mark that one
cannot help but wonder if Feynman had known of the
error, whether he might not have continued his work on
rotons in an effort to improve that spectrum.

Feynman on superfluid flow

In an article in Progress in Low Temperature Physics,"
Feynman discussed in some detail the nature of superfluid
flow, with particular attention to the quantization of
circulation for rotational flow, the response of the
superfluid in a bucket that is rotated, and the existence of
a critical velocity for superfluid flow. He showed how the
formation of the quantized vortex lines, suggested by Lars
Onsager in 1949 (in a paper that Feynman read only after
completing his own, independent work), could enable the
superfluid to respond to rotation as though it were a solid
body. The quantization of circulation takes the form

fﬁvﬁ'dl:nh/m

where the line integral is to be carried out over any closed
path. By considering the kinetic energy contained in the
vortex lines, Onsager and Feynman showed that when the
superfluid is set in rotation, it would be energetically
favorable to form singly quantized vortex lines in such &
way as to mimic the solid-body rotation.

Feynman then considered the role that vortex lines
play in more general fluid motions, with particular
attention to the possibility that the critical velocity for
superfluid flow could be determined by the production of
vorticity. By estimating the energy required to create
vortices for a typical experimental situation, he arrived at
a quite reasonable estimate of the superfluid flow velocity
(~1m/sec). He then made a pioneering effort to consider
the nature of superfluid turbulence. The paper is a classic:
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It addresses a range of extremely difficult problems in an
imaginative, very physical and correct way; and it set the
stage for all future work on superfluid flow.

Feynman on superconductivity

Feynman worked very hard on superconductivity during
1954-57. I was aware of this in a general way from
reading references to superconductivity in several of his
papers written during this period and from listening to
his 1956 lecture to the International Congress on Theo-
retical Physics in Seattle. However, the extent to which
this problem had become a central focus for his research
became clear to me only when I visited Caltech for two
weeks in December 1956. Feynman and I had lunch
together nearly every day; walking to lunch, at lunch
and after lunch, Feynman would try out a new set of
ideas about superconductivity on me. (An incomplete
list of these ideas may be found in his published Seattle
lecture.'®) It was clear from these conversations that he
was thoroughly familiar with both the experimental and
the theoretical literature on superconductivity. Indepen-
dently of Arkady Migdal, Feynman had tried his dia-
grammatic techniques on the electron-phonon system
and found that the system continued to behave normal-
ly. Cohen pointed out to him that this was perhaps not
surprising, since the true ground state might not be
obtainable using perturbation theory—a quite prophetic
remark.
Feynman’s strategy for solving superconductivity, as
described in his 1956 lecture, is worth recounting:
I would like to maintain a philosophy about this
problem which is a little different from usual: It
does not make any difference what we explain, as
long as we explain some property correctly from first
principles. If we start honestly from first principles
and make a deduction that such and such a property
exists—some property that is different for supercon-
ductors than for normal conductors, of course—then
undoubtedly we have our hand on the tail of the
tiger because we have got the mechanism of at least
one of the properties. If we have it correct we have
the clue to the other properties, so it isn’t very
important which property we explain. Therefore, in
making this attempt, the first thing to do is to choose
the easiest property to handle with the kind of
mathematics that is involved in the Schrodinger
equation. [ want to summarize some thoughts on

5.0 6.0  curve shows results for 2.29 K, the blue
curve for 1.06 K. Figure 2

this question, although they do not represent a
solution. They represent a statement of the problem
and a little bit of a personal view.

I decided it would be easiest to explain the
specific heat rather than the electrical properties. . . .
But we do not have to explain the entire specific
heat curve; we only have to explain any feature of it,
like the existence of a transition, or that the specific
heat near absolute zero is less than proportional to
T. 1 chose the latter because being near absolute
zero is a much simpler situation than being at any
finite temperature. Thus the property we should
study is this: Why does a superconductor have a
specific heat less than 77

Unlike many of the other great theoretical physicists
who worked long and unsuccessfully trying to develop a
microscopic theory of superconductivity, Feynman was
quick to recognize that John Bardeen, Leon Cooper and
Robert Schrieffer had indeed solved the problem in their
epochal 1957 paper. Thus at the Kamerlingh Onnes
Conference in 1958 he remarked that superconductivity
had been solved, and in his 1961 lectures on statistical
mechanics he described the BCS theory in considerable
detail.

Another indication that he retained his interest in the
field is the description of the Josephson effect in the
Feynman Lectures, which indicated that he clearly real-
ized the implications of this work, though he never worked
on this subject himself.

Feynman on polarons

Electrons in ionic crystals are coupled (often strongly) to
the nearly frequency-independent optical modes, so that
as an electron moves it is accompanied by a polarization
wave that acts to reduce its energy and increase its mass.
The resulting entity, the electron plus its accompanying
phonon cloud, is called a polaron. The polaron problem,
first worked on by Landau and S. I. Pekar in the 1930s and
revived by Herbert Frohlich in the late 1940s, is of
intrinsic theoretical interest because the dimensionless
electron-phonon coupling constant « is typically large, so
that perturbation-theoretic methods do not apply. It
attracted the interest of many of us in the early 1950s
because of the possibility that by understanding such a
strong-coupling problem we might be able to make
progress on a microscopic theory of superconductivity.
Thus when [ came to Urbana in 1952 to work as a postdoc
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with Bardeen, he suggested that I look into polarons, with
the result that Tsung-dao Lee, Francis Low and I
developed an intermediate-coupling theory of polarons at
the University of [llinois, Urbana-Champaign, while quite
similar work was carried out independently by Frohlich
and his students in Liverpool.

Feynman became interested because he saw the
polarons as an opportunity to test the power of his path
integral approach by using a variational principle to
compute the ground-state energy for the electron cou-
pled to the phonon field. He was right; with comparati-
vely little effort, he was able to reproduce our intermedi-
ate-coupling results and to obtain, by a different choice
of parameters in the trial actions in his path integral,
accurate results for the ground-state energy and effec-
tive mass that extend smoothly into the strong-coupling
domain."?

(Incidentally, Bardeen’s intuition that understanding
polarons might help in the development of a microscopic
theory of superconductivity proved to be correct.
Schrieffer arrived at the BCS variational wavefunction by
adapting the intermediate-coupling ground-state wave-
function, which Lee, Low and I had obtained, to the model
Hamiltonian Bardeen, Cooper and Schrieffer had used to
describe superconductivity.)

Feynman's interest in polarons continued into the
1960s. With his postdoc Robert Hellwarth and his
students Carl Iddings and Philip Platzman, he extended
his variational path integral approach to the calculation of
the polaron response to an external field (in unpublished
calculations, Feynman had independently arrived at the
Kubo-Lax description of transport properties in terms of
response functions), and so obtained an expression for the
polaron mobility for arbitrary coupling constant. This
further enabled them to examine transport under condi-
tions for which the Boltzmann equation is not an adequate
approximation.*

The Feynman legacy

Following the seminal work of Migdal and his students
Spartak Beliaev and Victor Galitskii, and of Murray Gell-
Mann and Keith Brueckner, in the mid-1950s, Feynman
diagrams have become one of the major methods used to
calculate and describe physical processes in condensed
matter physics. Yet they were almost never so used by
Feynman. This seeming paradox is resolved when one
realizes that the problems in condensed matter physics
that interested Feynman were those of strongly interact-
ing systems, for which a variational approach, either by
itself or combined with his path integral formulation, was
ideally suited. Summing Feynman diagrams offers a
marvelously compact way of carrying out consistent
perturbation-theory calculations and, in some cases, of
giving general proofs. Thus for the problems that
interested Feynman, diagrams were therefore not very
useful, and Feynman made only sparing use of them in his
papers on condensed matter physics.

For a number of years, Feynman spent a day each
week at Hughes Research Laboratories; during this period
he gave a series of lectures on topics that interested him,
as well as consulted with colleagues there. In 1961 he
lectured on statistical mechanics; the notes on his lectures,
which were taken by R. Kikuchi and H. A. Feiveson,
rapidly became a samizdat classic in the field. Some years
later, when the publisher W. A. Benjamin approached
Feynman seeking to publish these notes, he told me that
given that some time had passed and he was no longer
working in the field, he could no longer be sure that they
would be of interest; he would therefore publish only on
the condition that I first read them through and guaran-
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teed their continuing interest. This I did, and had ng
difficulty in providing the requisite guarantee because the
notes contain a remarkably lucid and at times quite
personal exposition of statistical mechanics. On reading
them one realizes anew what excellent taste Feynman had
in identifying those topics that would best provide the
beginner with insight into the key methods and concepts
of statistical mechanics, and how willing Feynman was to
explore a topic in depth, from its beginnings to current
research. By now generations of graduate students (the
book is in its 11th printing) have come to share this view,
and I have little doubt that these notes®! will join his other
lecture notes and books as part of the library of the
working physicist for generations to come.

As with the other fields in which Feynman worked,
his influence on condensed matter physics was profound,
and will continue to be so. Feynman diagrams and path
integrals have become indispensable tools for theorists
and experimenters alike, and backflow is now a significant
part of the vocabulary of the physicist studying many-body
problems. His work on polarons represents a difficult, if
not impossible, act to follow, while his papers on liquid
helium set clearly the signposts for future work in the
field, work that will incorporate at every level the physical
picture he set forth some 35 years ago.

* W

I should like to thank Phil Anderson, Gordon Baym and Chris
Pethick for their careful reading of this manuscript and their
helpful suggestions.
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