MRS MEETS IN BOSTON

Planners of the annual fall meeting expect the largest attendance ever.

The Materials Research Society will hold its fall meeting from 27 November to 2 December at its regular venue in the Marriott and Westin hotels in Boston. Roughly 2500 papers will be given at 24 technical symposia and three poster sessions, giving meeting organizers reason to believe this year's will be the biggest fall MRS meeting ever held. As in past years, the meeting will have an interdisciplinary format. Organizers expect the six-day gathering to be attended by physicists, engineers, chemists and other materials researchers, from both the industrial and academic spheres.

On-site registration will be held on the fourth floor of the Marriott, at the following times: Sunday, 26 November, 4 pm-9 pm; Monday, 7 am-7 pm; Tuesday, Wednesday and Thursday, 7:30 am-noon. MRS is also accepting telephone preregistration. (Ask for "meeting registration" at MRS head-quarters: (412) 367-3003.)

At a session on Monday evening, Robert N. Noyce, a coinventor of the integrated circuit who is now chief executive officer of Sematech, will deliver the plenary address.

Symposia and short courses

A symposium entitled Frontiers of Materials Research, featuring five invited talks meant to provide authoritative reviews for nonspecialists, will be held Monday through Thursday at 12:05 pm. Monday's session will be broadcast live via satellite to selected industrial laboratories by the Public Broadcasting System. The invited talks will review newly designed types of steel, diamond Schottky diodes, liquid crystals, high- T_c thin films and materials synthesis using

biological processes.

The last of these talks touches on a new area of materials science, which will receive a more detailed treatment Tuesday through Thursday at its own symposium. Papers given at this symposium will discuss fabricating materials by mimicking natural processes such as the growth of bones or teeth. Another novel topic to receive some attention at the meeting is multifunctional materials, which will be the subject of a symposium on Wednesday, Thursday and Friday. Papers will describe a new approach to fabrication science whereby materials are designed to simultaneously optimize different properties, such as resistance to high temperatures and optical transmission. Though still in its infancy, the multifunctional approach has already produced some promising materials for high-technology electronics. For example, polymers designed to be both strong adhesives and good conductors have been

John B. Goodenough

used for shielding materials in aerospace applications.

In addition to the new topics, the schedule will feature many sessions that have become standards at the MRS meeting because of their well-established, wide-ranging interest to materials researchers. These include sessions on high- $T_{\rm c}$ superconductors, electronic materials, ceramics, polymers, beam processing, defects in semiconductors, and thin film epitaxy

MRS has planned 22 short courses on topics related to materials research. The courses, which meet throughout the week, are scheduled so that attendees of a particular course can also attend all the symposia on closely related topics.

This year's slate of short courses includes some new topics, such as analytical electron microscopy, silicon integrated circuit fabrication, epitaxial growth of compound semiconductors, and optical characterization of III–V semiconductor epitaxial layers. (Student scholarships are available.)

The society's highest honor

Each year, MRS selects a scientist to receive the Von Hippel Award for contributions to interdisciplinary research on materials. This year, the award, which is the highest honor conferred by the society, will be presented to John Bannister Goodenough of the University of Texas at Austin, in recognition of his "distinguished contributions to the field of solid-state sciences, where his insights, ideas, knowledge and research have consistently drawn together the basic concepts of physics and chemistry in the conquest of wide-ranging fundamental topics." Goodenough will receive the Von Hippel Award at a ceremony scheduled for 6 o'clock Wednesday evening.

Goodenough received his AB in mathematics from Yale University in 1943 and his PhD in physics from the University of Chicago in 1952. He was a research physicist at the Lincoln Laboratory at MIT from 1952 until 1976, when he became a professor and head of the inorganic chemistry laboratory at Oxford. In 1986 he

came to the University of Texas at Austin, where he now holds the Virginia H. Cockrell Centennial Chair of Engineering.

Also at Wednesday's ceremony, the winners of the MRS graduate student

Schedule of Sessions and Their Invited Speakers

Monday, 27 November morning

Ion assisted deposition. J. J. Cuomo; E. Chason; K. Miyake Interfaces and heteroepitaxy. D. K. Biegelsen; R. M. Tromp

Initial stages of heteroepitaxy. J. E. Northrup

Heteroepitaxy: Metal/semiconductors. J. P. Harbison

III-IV semiconductors: Bulk crystal growth and properties. S. Sen, S. McDevitt

Characterization of plasma-enhanced CVD processes: Diagnostics and modeling. A. Garscadden; J.-P. Boeuf; J. M. Jasinski; M. L. Mandich

Introduction to neutron scattering and experimental techniques. J. D. Axe; R. Pynn; J. B. Hayter

Overview of advanced electronic packaging materials. D. E. Eastman; S. D. Prough; J. P. Krusius; K. Kimbara; J. F. MacDowell

Theory and experiment of high-T_c superconductors. P. W. Anderson; M. L. Cohen

Micromechanics of interfaces. J. F. Mandell

Polymer-based molecular composites: Inorganics/emulsions. H. Schmidt; G. L. Wilkes; F. Candau

General optical fiber processing I. S. R. Nagel; A. J. Hurd

General optical fiber processing II. I. M. Thomas

Organic solid-state materials: Plenary session. D. O. Cowan; A. J. Heeger; A. F. Garito

Organic ferromagnets I. Z. Yoshida

Nuclear waste management: Cementitious materials—aspects of durability. F. P. Glasser

Phase behavior and structure: Polymers. W. W. Graessley; L. Leibler;

Phosphate cements. L. C. Chow

afternoon

Surface studies under growth conditions. E. Bauer

Heterointerface structure. R. C. Pond

II–VI semiconductors: Optical and electrical properties. A. V. Nurmikko; Y. Marfaing

Electronic structure of semiconductors—shallow impurities. L. M. Smith PECVD of silicon oxides and nitrides. A. S. Harrus; D. L. Smith; S. Dzioba

Neutron scattering: Surfaces, films and interfaces. B. Farnoux

Advanced electronic packaging materials: Optoelectronics. J. D. Crow; J. G. Fujimoto; M. M. Oprysko; T. L. Koch; P. R. Prucnal; K. S. Abbott

 $\mbox{High-$T_{\rm c}$ superconductors: Novel materials. A. W. ${\it Sleight; C. N. R. Rao}$}$

Polymer-based molecular composites: Emulsions/blocks. C. M. Paleos; D. J. Meier

Optical fiber coatings. R. G. Huff.

Optical fibers: Environmental effects. P. J. Lemaire

Conducting polymers I: Polyaniline. A. G. MacDiarmid; A. J. Epstein

Nuclear waste management: Cementitious materials—aspects of leaching. I. G. Richardson

Phase behavior and structure: Surfactant systems. G. B. Benedek; R. B. Meyer; D. Roux; Y. Talmon

Frontiers of materials research I: TV session. G. B. Olson; G. Gildenblat; M. Bednarski; G. S. Attard; T. W. Sigmon

Specialty cements with advanced properties: Special processing I—DSP. S. Wise

Tuesday, 28 November morning

Ion beam mixing. J. Bøttiger; W. L. Johnson

Encapsulated surfaces. K. Akimoto

Scanning tunneling microscopy. W. J. Kaiser; J. C. H. Spence

General topics in strained-layer epitaxy. P. S. Peercy; J. Y. Tsao

Doping of II-VI materials. M. C. Tamargo; H. Kukimoto; J. M. DePuydt

Diamond for electronics: Growth and characterization. A. T. Collins; T. R. Anthony

Electronic structure of semiconductors—Complex defects in Si. M. L. W. Thewalt; Th. Wichert

Hydrogen in Si, I. G. D. Watkins; G. L. Chiarotti

Characterization of plasma-enhanced CVD processes: Semiconductors. J. E. Greene; T. M. Mayer; R. A. Rudder

Neutron scattering: Phase transformations and high-T_c. W. Petry; W. I. F. David

Advanced electronic packaging materials: Polymers. H. Hiramoto; S. I. Stupp $High-<math>T_c$ superconductors: Thin film deposition—laser ablation technique. R. K. Singh; H. S. Kwok

Interfaces in polymer composites I. A. T. DiBenedetto; N. Sung; M. R. Piggott Polymer-based molecular composites: Rigid-flexible systems. R. S. Stein; S. J. Krause

Halide glasses and fibers. P. W. France

Organic superconductors and organic metals I. G. Saito; V. N. Laukhin; M. Tokumoto

Biological and biomimetic mineralization I. R. P. Blakemore; H. C. Slavkin, A. I. Caplan

Fractal aspects of materials: Pattern formation and growth. C. M. Knobler; F. Family; W. Klein

Modeling the dissolution of nuclear waste forms. A. Navrotsky

Non-newtonian flow. D. S. Pearson; S. T. Milner; R. Bruinsma; G. H. Fredrickson

New cement systems. J. F. Macdowell; W. D. Kirkpatrick

afternoor

Beam-solid interactions: Modeling/fundamental studies. B. J. Garrison

Probes of chemisorbed layers. R. J. Hamers

Molecular dynamics. G. H. Gilmer SiGe epitaxy. S. S. Iyer; R. Hull

II-VI semiconductors: Thin films and heterostructures I. T. C. McGill; T. Yao

Hydrogen in Si, II. T. L. Estle

Hydrogen in III-V semiconductors. B. Pajot

Characterization of plasma-enhanced CVD processes: Novel materials/ applications. P. K. Bachmann; M. Hirose; E. Kay

Neutron scattering: Alloys I. J. Peisl

Advanced electronic packaging materials: Composites. R. E. Newnham; G. Arjavalingam; J. Kim

High- T_c superconductors: Bulk materials. *P. H. Hor; B. C. Giessen* Interfaces in polymer composites II. *L. T. Drzal*

Polymer-based molecular composites: Blends/IPN's. W. J. MacKnight;

Optical fibers: Polymers and planar waveguides. T. Yamamoto; N. Takato Organic metals II. E. B. Yagubskii; A. M. Kini

Conducting polymers II: Polyheterocyclics. R. L. Elsenbaumer

Biological and biomimetic mineralization II. E. D. Eanes

Fractal measures and pattern formation II. C. Tricot; G. M. Dimino

Colloids. H. N. W. Lekkerkerker; D. A. Weitz; W. B. Russel; J. W. Goodwin

Frontiers of materials research II. J. Narayan; A. W. Urguhart.

Specialty cements with advanced properties: Special processing II—MDF. J. F. Young

Wednesday, 29 November morning

In-situ patterning: Selective area deposition and etching. G. Taylor; A. Wilson; T. W. Sigmon

Silicide interface reactions and structure. D. J. Eaglesham

Metallic superlattices. C. P. Flynn

III-IV semiconductors: Thin films and heterostructures II. M. Konagai; T. Taguchi

awards, given for papers delivered at the meeting, will be announced.

AIP will organize an exhibit on the third floor of the Marriott, displaying analytical and processing equipment used in materials research. The exhibit hours are as follows: Tuesday, 28 November, noon-7 pm; Wednesday, 9 am-5 pm; and Thursday, 9 am-2 pm. There will be a reception at the equipment exhibit on Tuesday evening from 5 pm until closing. AIP is

also running a job placement center, open Tuesday through Thursday from 9 am to 5 pm, where resumés will be made available to prospective employers and job interviews will be scheduled.

Diamond for electronics. M. W. Geis

Diffusion in Si. S. T. Pantelides

Microcrystalline silicon: Growth. A. Matsuda; S. Vepřek

Neutron scattering: Alloys II and residual stress. R. G. Downing; A. D. Krawitz

Aluminum nitride. G. R. Miller

Chemical vapor deposition of refractory metals and ceramics: Fundamentals/modeling. C. Bernard; K. E. Spear; K. F. Jensen

High-T_c superconductors: Thin film deposition—Other techniques. J. Kwo; T. Geballe

Adhesion and strength of interfaces. M. Tirrell; H. T. Hahn; R. A. Lowden lonomers/structure. A. Eisenberg; R. Kopelman

Optical fibers: Rare earth doped glasses. R. H. Stolen; E. Snitzer

Organic ferromagnets II. A. J. Epstein; J. B. Torrance; F. Wudl; H. Iwamura; K. Itoh

Nuclear waste management: Spent fuel performance. G. Choppin

Applications of complex fluids. H. H. Winter; J. Bock; N. A. Clark; F. Candau; F. E. Filisko

afternoon

In-situ patterning: Selective area deposition and etching. S. Kishida; F. Bozso Electrical properties and devices in diamond and diamond-like materials. W. E. Pickett; N. Fujimori; M. A. Tamor

III-V (A). U. K. Mishra

II-VI semiconductors: Novel growth and characterizations. N. C. Giles; J. M. Arias

Ordering in alloys. G. Stringfellow

Semiconductor compounds: Nanocrystals. L. Brus; P. D. Persans

Neutron scattering: Polymers and disordered systems. J. S. Huang; D. L. Price

Metallization and interconnects. M. Krishnan

High- T_c superconductors: Crystal chemistry. C. Chaillout

Interfaces in ceramics and ceramic composites. T. A. Michalske

Polymer-based molecular composites: Synthesis/electro-optical properties. L. R. Gilliom; T. Kajiyama

Non-linear optical molecules. J. Zyss; D. S. Donald

Multifunctionality in ceramics/polymers. I. A. Aksay; R. Roy; L. L. Hench; R. Lytel; H. K. Hall Jr

Fractal aspects of materials, and nuclear waste management: Sizing and scaling effects. J. Feder; C. C. Barton

Interfacial behavior: Solid/liquid, liquid/liquid. M. W. Kim; D. Andelman;S. Garoff

Fly ash and coal conversion by-products characterization, utilization and disposal I. G. J. McCarthy

Frontiers of materials research III. D. Ulrich; R. C. Dynes

Thursday, 30 November

morning

Beam modification of ceramics and superconductors. O. Meyer

In-situ patterning: Selective area deposition and etching. Y. S. Liu

III-V (B). F. Capasso; P. I. Cohen

HgCdTe: Surfaces, passivants, and processing. Y. Nemirovsky

Silicon-carbide: Growth, characterization electrical properties, and devices I. H. Matsunami; R. F. Davis

Superlattices—electronic structure. D. C. Reynolds; J. Dow

DX centers I. T. Theis

Microcrystalline silicon: Properties. 5. Wagner; I. Shimizu

Chemical vapor deposition of refractory metals and ceramics: Process—microstructure relationships. R. F. Davis

High-T_c superconductors: Dissipation. M. Tinkham; P. H. Kes; Y. Iye

Polymer-based molecular composites: Interfaces/mechanical properties. P. F. Green

Conducting polymers III: Polyacetylene and polysilane. E. W. Conwell Nonlinear optics in multifunctional materials. P. N. Prasad;

D. Davidov;H. A. Goldberg; M. R. Worboys

Fractal aspects of materials: Surfaces I. P. Pfeifer

Macromolecular liquids: Exotic systems I. T. A. Witten; M. Kardar; S. Leibler

afternoon

In-situ patterning: Selective area deposition and etching. G. Bronner

Small angle x-ray characterization and amorphous layers.

P. D. Persans; J. Kakalios

HgCdTe: Epitaxial growth. S. K. Ghandi

Silicon-carbide: Growth, characterization electrical properties, and devices II.

B. Molnar

Other wide band-gap semiconductors I. J. I. Pankove

Impurities, defects and diffusion in semiconductors: DX centers II. D. Chadi Impurities, defects and diffusion in semiconductors: EL2 defects. G. A. Baraff;

J. M. Baranowski
Microcrystalline semiconductors: Optical properties. S. Furukawa

Silicon alloys. Y. Matsumoto

Chemical vapor deposition of refractory metals and ceramics: Microstructuremechanical property relationships. V. K. Sarin

 $\mathsf{High-}T_c$ superconductors: Thin film characterization and composite materials. $S.\ J.\ Pennycook;\ R.\ S.\ Feigelson$

Polymer-based molecular composites: Miscellaneous/conventional composites. T. Kurauchi

Spin density waves. G. Grüner; P. Garoche; J. S. Brooks

Materials synthesis utilizing biological processes: Structure and self-assembly. J. G. Sivak

Multifunctional inorganic materials. J. D. Mackenzie; R. E. Newnham; R. F. Kovar; N. J. Phillips

Fractal aspects of materials: Surfaces II. P. Meakin

Fly ash and coal conversion by-products characterization, utilization and disposal III. R. F. Feldman

Frontiers of materials research IV. D. Vaughan; A. MacDiarmid

Friday, 1 December morning

Beam-solid interactions: Fast transient processing. M. O. Thompson In-situ patterning: Selective area deposition and etching I. F. G. Bachmann

Optical characterization of strained layers, quantum wells and superlattices. *T. P. Pearsall*

Hg-based superlattices; DMS materials. S. Y. Auyang; C. A. Hoffman; I. K. Furdyna

Other wide band-gap semiconductors II. O. Mishima; Y. Kumashiro

Doping in III-V's. W. Walukiewicz

Superlattices-diffusion. L. J. Guido; U. Gösele

Microcrystalline semiconductors: Devices and applications. T. Matsuyama

Chemical vapor deposition of refractory metals and ceramics: Novel/large-scale technologies. P. D. Shalek

Thin films: Bi and Tl compounds. K. Wasa; D. A. Rudman; D. S. Ginley

Nonlinear optical polymers I. P. D. Townsend; D. J. Sandman

Polymers for ultrastructures. G. Williams; G. S. Attard; N. Ogata; G. R. Davies

Gelation. M. E. Cates; M. Rubinstein

Fly ash and coal conversion by-products characterization, utilization and disposal IV. R. H. Mills; P. L. Pratt

Macromolecular liquids: Exotic systems II. G. S. Grest; P. S. Pershan: M. Robbins

afternoon

Beam modification of metals. E. Johnson

In-situ patterning: Selective area deposition and etching II. D. W. Bauerle

Optical characterization of epitaxial layers. O. J. Glembocki

Metal-organic chemical vapor deposition. G. S. Girolami

High- T_c superconductors: Thin films—properties and devices. L. H. Greene; J. M. Triscone; P. Mankiewich

Multifunctional design. A. H. Windle; E. L. Thomas; L. R. Dalton; D. M. P. Mingos

Fractal aspects of materials: DLA, electrodeposition kinetics. C. Evertsz;T. Vicsek

57