other experimental trial unscathed.
With LEP’s present complement
of 128 copper rf accelerating cavities,
its energy cannot exceed 55 GeV per
beam. (See the cover of this issue.)
Over the next several years the cop-
per cavities will gradually be replaced
by superconducting niobium rf cav-
ities being developed at CERN. By
the end of 1992 the schedule calls for

196 superconducting rf cavities to be
in place, yielding beams of 96-GeV
electrons and positrons.

—BERTRAM SCHWARZSCHILD
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DOES QUANTUM MECHANICS HAVE

NONLINEAR TERMS?

One hears about testing quantum
electrodynamics or relativity theory,
but the theoretical basis of quantum
mechanics is rarely questioned. Nev-
ertheless, Steven Weinberg (Universi-
ty of Texas) has recently called for
high-precision tests of quantum me-
chanics that are independent of any
particular quantum mechanical theo-
ry.! To pave the way for an examina-
tion of quantum mechanics, he has
suggested one possible way of general-
izing quantum mechanics to make it
nonlinear. As Eugene Wigner point-
ed out in a 1939 paper, the linearity of
quantum mechanics is an important
assumption and one that may not
necessarily always prove true. Wein-
berg stressed to us that he does not
really feel that quantum mechanics is
in any immediate danger, but he does
believe that we can learn by question-
ing it: If we find that quantum
mechanics cannot be generalized any
further, we may come to understand
better why it works so well. If we find
that the theory can be generalized in
a plausible way, then we must ask
why ordinary quantum mechanics is
so nearly valid—and we may discover
some hidden physics in the process.

Weinberg has suggested one partic-
ular example in which a nonlinearity
might manifest itself, and several
experimental groups have taken up
the search for it. The first results are
now in: John Bollinger, Daniel Hein-
zen, Wayne Itano, Sarah Gilbert and
David Wineland of the National Insti-
tute of Standards and Technology
(Boulder, Colorado) have set a very
low upper limit on the size of a
possible nonlinear term in the hyper-
fine splitting of a beryllium atom.
Bollinger presented these results at
the annual meeting of the APS divi-
sion of atomic, molecular and optical
physics, held in Windsor, Ontario, last
May.?

Quantum mechanics has been test-
ed in several ways before. One set of
experiments aimed to distinguish it
from local hidden-variable theories.
(See the article by David Mermin in
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PHYSICS TODAY, April 1985, page 38.)
These experiments succeeded in rul-
ing out hidden variables, but Wein-
berg points out that they did not test
quantum mechanics to better than
about one percent. Another approach
to testing quantum mechanics dealt
with the incorporation of nonlinear
terms into the Schrédinger equation.
In 1980, at the suggestion of Abner
Shimony? (Boston University), a team
led by Clifford Shull* (MIT) used
neutron interferometry to search for
possible nonlinear terms of a form
suggested by Iwo Bialynicki-Birula
and Jan Mpycielski® (University of
Warsaw). Roland Gahler (Technical
University of Munich), Anthony G.
Klein (University of Melbourne, Aus-
tralia) and Anton Zeilinger® (Techni-
cal University of Vienna), working at
the Laue-Langevin Institute in Gre-
noble, followed with a similar experi-
ment that set more stringent limits on
the size of the nonlinear term.

Nonlinear formulation

Weinberg set out to make the most
general formulation possible that is
still consistent with essential proper-
ties of quantum mechanics. A key
requirement was to preserve homo-
geneity—to ensure that if one wave-
function is a solution of the Schro-
dinger equation, then so is another
wavefunction that is just a constant
multiple of the first. The nonlinear
term introduced by the Polish theo-
rists did not satisfy this condition.
Weinberg assumes that the time de-
pendence of the wavefunction is given
by:

4% _ dhww*)
dt av, *

This equation reduces to the standard
form if the Hamiltonian function h
has the bilinear form ¥, * H,, ¥,,but
allows for treatment of possible terms
in the Hamiltonian that are not
bilinear. In the example of a general-
ized two-component system, Wein-
berg shows that the Hamiltonian
function h can be put in the form

n h(a), where n is the norm
[W, |*+ |¥,|? and h is an arbitra
function of the variable a = |¥, |*/p,

For an atom undergoing a radia.
tive transition (such as that between
two hyperfine levels), Weinbergs
equation predicts that the resonant
transition frequency will be sensitive
to the occupancy of the two levels,
This transition frequency will change
as these occupancies change. If one
drives a certain transition with an
applied monochromatic oscillator, de-
tuning will result because the reso-
nant transition frequency will shift as
the oscillator continues to populate
the upper levels. For a weak nonlin-
earity, the shift in frequency will be
small. To detect it, one must make
the coupling between the oscillator
and the atom as weak as possible so
that the transition takes a long time.
The sensitivity of the technique thus
varies inversely with the time of
perturbation.

Weinberg used data from a 1985
experiment performed at NIST’ (then
called the National Bureau of Stan-
dards) to estimate an upper limit on
the size of the nonlinear term. In that
experiment, Be ions were driven
from one state to the other with a
single pulse about 1 second long
Because the transition could be driv-
en with such a pulse, Weinberg in-
ferred that the nonlinearity could not
lead to a shift of more than the
inverse of that pulse length, or 1 Hz,
which corresponds to a nonlinear
term on the order of 10~ eV.

Norman Ramsey (Harvard Uni-
versity) in 1949 originated a tech-
nique for measuring atomic resonant
transitions and hence for setting fre-
quency standards. This so-called
method of separated oscillatory fields
gives a sensitive way to detect
changes in transition frequencies.
First, an rf pulse is applied to an atom
and then turned off. This creates a
superposition state, with specific pop-
ulations of the two atomic levels, that
depends on the amplitude, frequency
and length of the pulse. After a
certain time interval, a second rf
pulse of the same length, coherent
with the first, is applied. If the two if
pulses are at the resonant trgnsr.thn
frequency, the second pulse will be in
phase with the superposition state
and it will continue to transfer the
ions to the upper state. The rf fre-
quency is changed until this resonant
condition is met.

If a nonlinearity is present, the
phase of the superposition state
not be determined simply by the
difference between the energy eigen
values of the two levels but will also
depend on the state amplitudes creat



ed by the first pulse. Thus the reso-
nant frequency measured by the
Ramsey method will depend on the
length of the first pulse. In this
method for detecting a nonlinearity,
the accuracy is inversely related to
the time between pulses.

Experimental tests

Bollinger and his colleagues decid-
ed that, by using unequal pulses, they
could improve considerably on the
estimate Weinberg had extracted
from their earlier-data. They under-
took a new experiment on (Be”)™ ions,
using a collection of 5000-10 000 ions
stored in a Penning trap and cooled
below 250 mK. The design of their
experiment is best viewed in terms of
the precession of the (Be®)" nucleus in
an applied magnetic field. The
precession rate does not vary with the
angle between the spin and the mag-
netic field vector. In a nonlinear
quantum theory, however, the preces-
sion rate does vary with angle, be-
cause the angle is a measure of the
particular mixture of states.

To measure the precession rate the
researchers applied the Ramsey
method with unequal rf pulses. First
they prepared the ions in the
(— %, + Y,) state by a combination of
optical pumping and rf resonance
techniques. (The state is specified by
quantum numbers denoting the nu-
clear and electronic spins, respective-
ly.) The first Ramsey pulse was then
applied to create a superposition with
the (— %, + ,) state. The length of
this pulse determined the amplitude
of each eigenstate in the superposi-
tion, and hence the tipping angle of
the Be? nuclear spin. After a period of
time, typically 100 sec, the second
Ramsey pulse was applied. The ion
population in the (—',, + Y% ) state
was detected by laser-induced fluores-
cence. The more ions remaining in
the (— %, +Y,) state, the lower the
fluorescence signal. The fluorescence
thus peaks as a function of the fre-
quency of the Ramsey pulses. The
resonance (precession) frequency was
determined from the average of the
frequencies at half of the maximum
intensity. The NIST team measured
the precession rate at two angles (see
the figure on this page). The preces-
sion frequency did not change signifi-
cantly with angle. Averaging over 25
runs, the researchers found that the
frequency difference was 2.7 + 6.0
#Hz, corresponding to an upper limit
of 24x10-%° eV on the nonlinear
term,

_To judge how stringent this upper
limit is, one needs to compare it with
some energy scale, but what scale is
appropriate? Weinberg maintains
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Precession frequency is not expected to vary with tipping angle
if guantum mechanics is without nonlinearities. An experiment
on Be? ions measured the precession frequency during
alternating time intervals in which the tipping angle had values of
1.02 rad (blue shading) and 2.12 rad. The frequencies are
plotted relative to the time-averaged frequency. The precession
frequencies for the two tipping angles, averaged over many runs
like that shown above, differed by less than 8.7 uHz. (Adapted

from ref. 2.)

that the proper energy for compari-
son in this case is the nuclear energy.
When compared with the binding
energy per nucleon for the beryllium
atom, the fractional upper limit on
the nonlinearity becomes 4 x 10~ %7,

Work in progress

At least three other research teams
are seeking nonlinearities. One of
these—a group led by Norval Fortson
at the University of Washington—is
looking for the variation with angle of
the precession frequency of a spin-¥,
nucleus, in this case, Hg?"'. The
investigators sense the precession
rate through its modulation of an
optical signal. Actually the preces-
sion rate is the superposition of three
frequencies corresponding to the en-
ergy separations between four hyper-
fine levels. If the frequencies remain
constant, independent of the ampli-
tude in each state, linear quantum
mechanics holds. At Harvard, Ti-
mothy Chupp is conducting a similar
experiment but with a different nu-
cleus Ne?! and a different experimen-
tal method.

Isaac Silvera (Harvard University)
and his student Ronald Walsworth, in
collaboration with Robert Vessot and
Edward Mattison of the Smithsonian
Astrophysical Observatory, are work-
ing with quite a different tool—the
hydrogen maser. However, the non-
linear effect Weinberg identified
shows up only in a particle of spin

greater than or equal to 1, whereas

the spin of the hydrogen nucleus is ¥, .
Walsworth has worked out a treat-
ment for this case and applied it to
existing data from hydrogen masers.
He hopes to improve the accuracy by
at least two orders of magnitude by
conducting an experiment directly
aimed at sensing the nonlinearities.
So far he estimates an upper limit in
terms of eV that is a factor of ten
higher than that of the NIST team.
However, compared with what might
be the appropriate energy scale for
the hydrogen atom—13.6 eV—this
fractional upper limit on the nonlin-
earity is on the order of 10~ %".
—BaRrBARA Goss LEVI
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