continued from page 15

DRESDEN REPLIES: Both Akira Isihara and R. Byron Bird observe that although Hendrik Kramers wrote only one paper on polymer statistics, that paper had an enormous and lasting influence. This observation is in complete harmony with the ideas expressed in my paper: Kramers's contributions to statistical mechanics, few as they are, are gems full of technical mathematical innovations, combined in a most original way with deep physical insight.

I am most thankful to Isihara and Bird for calling attention to yet another one of Kramers's seminal contributions, which like many others has not always received the recognition it deserves. This particular paper was not mentioned in the original article for lack of space, so it is gratifying that these letters give an idea of Kramers's contribution in this area, especially his unusual and perhaps unexpected use of Riemannian

geometry.

The thesis by R. M. F. Houtappel to which D. ter Haar calls attention was clearly strongly influenced by Kramers. The elegant mathematics, the ingenious way in which explicit group theory is avoided in a clever adaptation of Bruria Kaufman's method-these are as characteristic of Kramers as his signature. Thus Kramers was certainly aware of and explicitly conversant with the developments in the Ising model that followed the celebrated Kramers-Wannier paper. In that sense my statement that Kramers never worked on the Ising model after World War II is too strong. He clearly stayed informed and thought about it. Still, I believe that the general idea I expressed is probably correct. Comparing Kramers's intense, deep preoccupation with the Ising model during the war years with his subsequent more casual involvement, almost by proxy, indicates to me that his own personal involvement declined sharply if not precipitously. Of course Kramers, even if only casually interested, could make contributions of such depth and brilliance that any totally committed investigator would have been pleased and proud to have made them.

I believe that all the correspondents and I agree that Kramers was an unsurpassed master in using and inventing mathematical procedures that were miraculously suited to the elucidation of physical problems in statistical mechanics.

MAX DRESDEN
Stanford Linear Accelerator Center
Stanford, California

Profiles in Publishing Productivity

We recently completed a study of publishing patterns of PhD physicists trained and employed in the United States.1 We were particularly interested in the relationship between publishing activity and age. Because the average age of physicists, and scientists in general, has increased dramatically in the past 10-15 years, a concern of US science policy makers is whether this older group is as productive as a younger group was a decade or two earlier. Given the inherent difficulty of measuring research productivity, and given that there is some evidence that publishing is a reasonable measure of productivity,2 our study focused on the relationship between publishing activity and age. Specifically, we counted the number of journal articles authored in a two-year period. Adjustments were also made to this count for the number of coauthors as well as for the quality of the journal in which each article was published, where quality was measured by the impact the journal has on the science literature as reflected by citation practices. Physicists in the 1973, 1975, 1977 and 1979 Survey of Doctorate Recipients, administered biennially by the National Research Council, were included in the study.4 Information on their publishing patterns was taken from the Science Citation Index with the cooperation of the Institute for Scientific Information.

Past work by Stephen Cole5 and by Alan E. Bayer and Jeffrey E. Dutton⁶ on age-publishing profiles of physicists suggests that article production increases until early middle age and declines thereafter. Cole's sample was restricted to physicists employed in doctorate-granting departments in the late 1960s, while Bayer and Dutton's sample consisted of physicists employed at colleges and universities during the 1972-73 academic year. A strength of the SDR data base used in our study is that it is drawn from a later period and includes scientists in five employment sectors: graduate academic (universities offering a PhD in physics), nongraduate academic, Federally funded research and development centers, government, and business and industry.

Our results for physicists in academic employment are somewhat different from those of Cole or Bayer and Dutton. In particular, when we grouped our sample by five-year age intervals, we found that for physicists in graduate departments the productivity of the 35–39-year-old group is

10 watts linear, 10kHz to 250MHz.

The new Model 10A250 benchtop broadband amplifier gives you the freedom you've wished for in your rf testing.

Its great phase response is ideal for pulsed and non-sinusoidal waveforms. Ultrasound. NMR. Plasma physics. Interference susceptibility testing. All-around rf lab work.

Latest FET technology gives you instantly available bandwidth from 10kHz to 250MHz. And total immunity to load mismatch—even from open or shorted output terminals—means freedom from worry about foldback, oscillation, and blown output transistors.

You've always known our power ratings are ultra-conservative. The 10-watt nameplate on this one assures you 10 watts linear throughout the bandwidth, and even more when saturated. The Model 10A250 belongs in your lab.

160 School House Road Souderton, PA 18964-9990 USA Phone 215-723-8181 TWX 510-661-6094

Circle number 135 on Reader Service Card

8408

151

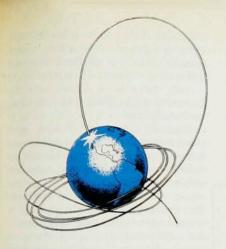
always significantly less than that of their younger colleagues, and output does not rebound to the pre-age-35 level for any age group. On the other hand, publishing activity does not continuously decline with age, although it does decline in the last years of the career regardless of the way articles are measured.

For physicists in nongraduate physics departments, the story is different. Although output is highest for the youngest group, until age 45-49 out-

put never differs at the 5% level of significance between the youngest and older groups. Those 45-54 years old, on the other hand, produce significantly less than the youngest of their colleagues, while the 55-59-year-olds publish more, perhaps because productive physicists are lured into the nongraduate sector from the graduate sector toward the end of their careers. or perhaps because less productive scientists tend to retire earlier.

At Federally funded R&D centers.

peak output is also produced by those under 35; for the next ten years output dramatically declines. It then increases or stays fairly stable for the next ten years, after which it again declines. Government is the only sector in which the peak productivity occurs in the middle of the career, not the beginning. In business and industry, publishing activity declines until age 49, then increases for ten years before declining again. This age pattern for business and industry is not inconsistent with what Donald C. Pelz and Frank M. Andrews7 found in the 1960s.


Our results also suggest that the age-publishing profiles depend upon how one measures publishing activity. The profiles are generally steepest when the article count is adjusted for quality, suggesting that the young are more likely to publish in prestigious journals. On the other hand, as physicists age, the straight count and the count adjusted for coauthorship converge, showing that a disproportionate amount of early output is coauthored. This result holds in all sectors and is contrary to the view that older physicists, through their administrative roles, "ride piggyback" on the shoulders of younger physicists.

The age-publishing profiles discussed thus far are drawn from crosssectional data. Since different age groups are observed at the same time in a cross-sectional analysis, the age effects found may be contaminated by what are called cohort or generational effects. If, for example, physicists in their sixties come from a particularly weak cohort and physicists their thirties from a particularly strong cohort, we would infer aging effects from a cross section even if they did not exist.

There are several reasons to believe cohort effects might be present. One theory-more popular, we might add, among social scientists than physical scientists-is that certain cohorts may be at a disadvantage because their members were educated prior to a major innovation in theory or experimental technique. If one subscribes to a "latest educated are best educated" philosophy, this would imply that the decline in publishing activity with age may be an artifact of "vintage" and not a true aging effect. On the other hand, the best vintage need not always come from the latest cohort, since science does not always advance smoothly but may experience for a time what are eventually regarded as "false turns."

Perhaps the most important reason to expect cohort effects is that

Moscone Convention Center San Francisco, CA

Fiber optics—the future of communications is here!

OFC[®] '90

ISDN • LAN • LOCAL LOOP • LONG HAUL • SENSORS • SPECIALTY FIBERS & DEVICES

OPTICAL FIBER COMMUNICATION CONFERENCE

January 22-25, 1990

ome to San Francisco in January and see why OFC® is considered the "premiere fiber optic gathering."

colocated with Lightwave's Fiber in the Subscriber Loop.

TECHNICAL PROGRAM

FC° is the major North American conference on optical fiber communications technologies. It offers the most up-to-date information and training, from the basics to the very latest in research, development, and applications.

The technical program will consist of the highest quality contributed and invited presentations reporting leading edge research and development in fiber, component, and system technologies for optical communications. In addition, OFC® '90 will feature a series of one hour tutorials and hree hour short courses for in-depth instruction in a variety of optical fiber communication disciplines.

n 1990, OFC* will also feature two special technical symposia consisting of invited papers on *Integrated Circuits for Lightwave Systems*, and *Vetworks and Switching*. These symposia will provide an overview of developments in two important areas which affect the application of fiber optic technology.

DFC® Session Topics:

- Fibers, Cables and Glass Components
- Optoelectronic and Integrated Optics Devices and Components
- Photonic Switching Techniques
- Direct Detection, Coherent Detection, Analog and Multichannel Transmission Techniques
- Systems and Subsystems for Optical Communications
- Fiber Optic Systems for Trunk, Feeder, and Subscriber
- Metropolitan Area, Local Area and Data Communications Networks
- New Applications of Fiber Optic Technology

Special Symposia on Networks & Switching:

(organized in cooperation with the IEEE Communications Society)

- Protocols and Software for High Speed Networks
- Problems and Progress in Switching Architectures for Tbit/s Networks
- Switching Technologies
- Influence of High Speed Optical Technology on Telecommunication Networks

EXHIBITS/PRODUCT PRESENTATIONS

January 23-25, 1990

The world's foremost exhibit of products and services used in the field of fiber optics will be held in conjunction with the meeting. Close to 200 companies are expected to exhibit. In addition, the product presentations will provide a series of demonstrations and lectures on new and imporant fiber optic products and systems. No fee is required for qualified professionals who wish to attend the product presentations and the echnical exhibits.

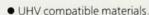
Cosponsored by Lasers & Electro-Optics Society of IEEE and Optical Society of America

For technical information contact:

Optical Society of America Meetings Department 1816 Jefferson Pl., N.W. Washington, DC 20036 (202) 223-0920 Telex 510 600 3965

For exhibit information contact:

Exhibits Department Optical Society of America 1816 Jefferson Pl., N.W. Washington, DC 20036 (202) 223-8130 Telex 510 600 3965 FAX 202-223-1096 research productivity, particularly as manifested in article counts, is strongly affected by characteristics of the employing institution. In particular, there is strong evidence that physicists employed in top PhD-granting departments and Federally funded R&D centers are more likely to publish than their colleagues in places where resources are scarcer and the environment is less condu-

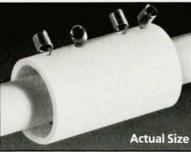

cive to research.⁸ It is clear that not all generations of physicists have had equal access to the most productive sector. Indeed, one need only look at the pages of physics today to see how job opportunities for physicists have changed over time. A cohort particularly hurt was that of the late 1960s and early 1970s—the cohort from which the "young" in our study are drawn.

THE FIRST IN-VACUUM, LINEAR MOTOR POSITIONING SYSTEM.

Featuring Remote Control With No Mechanical Feedthroughs.

Precision positioning inside high vacuum chambers used to require bulky, expensive equipment. No more. For over fifteen years, Burleigh has offered a diverse line of sophisticated piezoelectric (PZT) actuators and motor systems, including our famous all-piezoelectric Inchworm® motor. Now Burleigh has completely redesigned the compact Inchworm motor and companion translation stage for

in-vacuum operation.



- In-vacuum operation with remote controller.
- No mechanical feedthroughs or bellows.
- A small footprint makes it ideal for close quarters.
- True linear motion.
- Bakeout temperatures to 150°C
- Micron resolution

The Burleigh UHV Series represents an important advance. To receive a product brochure or discuss your application, call Burleigh and ask for the

UHV Applications Group.

Burleigh Instruments, Inc. Burleigh Park, Fishers, NY 14453 USA (716) 924-9355; Telex 97-8379

European Headquarters: Burleigh Instruments, Pfungstadt, West Germany, Tel. (06157) 3047, Telex (841) 4191728

United Kingdom: Burleigh Instruments, Ltd Tel. (0727) 41347, Telex (851) 94011348 Japanese Representative: Marubun Corp. Tel. (03) 6399871, Telex (781) J22803

Inchworm is a registered trademark of Burleigh Instruments, Inc.

© Burleigh Instruments, 1988

AVS Show-Booth #315

Circle number 137 on Reader Service Card

Finally, some have expressed concern that the average ability of new science PhDs has declined in recent years as the best and brightest in our society have been drawn into the lucrative professions of law, business and medicine.⁹

Because our data allowed us to observe physicists as they aged over a six-year period, we were able to draw inferences concerning the presence of cohort effects and to see whether true aging effects exist once we controlled for these cohort effects. Using an econometric technique that controls for both cohort and aging effects, we found evidence that except for particle physicists employed in PhD-granting departments, true aging effects exist. Furthermore, when we held the aging effects constant, we found evidence that for the period of our study the latest PhD cohorts were not the most productive in any of the subfields of physics we studied.

References

- P. E. Stephan, S. G. Levin, "Demographic and Economic Determinants of Scientific Productivity," Georgia State U., Atlanta (1987).
- R. Evenson, Y. Kislev, Agricultural Research and Productivity, Yale U.P., New Haven (1975).
- E. Garfield, ed., SCI Journal Citation Reports, Institute for Scientific Information, Philadelphia (1975).
- National Research Council, Science, Engineering, and Humanities Doctorates in the United States, 1979 Profile, Natl. Acad. Sci., Washington, D. C. (1980).
- S. Cole, Am. Sociol. Rev. 84(4), 958 (1979).
- A. E. Bayer, J. E. Dutton, J. Higher Ed. 48(3), 259 (1977).
- D. C. Pelz, F. M. Andrews, Scientists in Organizations, revised edition, U. Michigan P., Ann Arbor (1976).
- J. S. Long, Am. Sociol. Rev. 43, 889 (1978).
- H. R. Bowen, J. Schuster, American Professors: A National Resource Imperiled, Oxford U. P., New York (1986).

PAULA E. STEPHAN
Department of Economics
and Policy Research Program
Georgia State University
SHARON G. LEVIN

Department of Economics 2/89 University of Missouri, St. Louis

Bread Shortage in the Nation's Breadbasket?

In the December 1987 issue (page 9), George E. Pake writes: "Through its extensive nationwide system of research universities, centers of basic research are ubiquitous in the US.