TEMPERATURE FLUCTUATION:
A WELL-DEFINED AND
UNAVOIDABLE NOTION

Benoir B. Mandelbrot

In the May issue of PHYSICS TODAY
(page 93), Charles Kittel published an
Opinion piece in which he asserted
that “the consistent and consensual
definition of temperature admits no
fluctuations.” He was responding
(without quite saying so) to an earlier
Reference Frame by Herman Fesh-
bach (pHYsICS TODAY, November 1987,
page 9) and implicitly criticizing the
early editions of the classic treatise by
Lev Landau and Evgenii Lifshitz.'
Kittel also warned us against “fid-
dling”” with “mature concepts.”

Such games are indeed seldom ef-
fective. However, it has often hap-
pened in the history of science that a
concept that appears intuitively desir-
able to many but makes no sense in a
given consensual context eventually
finds a clear-cut meaning in a context
that has been suitably broadened; the
redefined concept then in its turn
deserves gaining consensus. My goal
here is to describe an argument I
made in the early 1960s that asserts
(turning Kittel's own words to a
different purpose) that for closed
thermodynamical systems it is the
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notion of temperature that is imper-
fectly defined and cannot give rise to
informed consensus.? In contrast, the
notion of temperature fluctuation
A(1/7)is perfectly well defined, not as
the standard deviation of a random
quantity, but rather in a novel way to
be described. This approach appears
to yield the simplest and fullest possi-
ble conceptual justification for the
desirable and familiar complementar-
ity relation’

AEA(1/T)=1

Stated differently, I asserted that in
a microcanonical system temperature
is defined only up to a well-defined
indeterminacy that one should be
allowed to call fluctuation. This last
notion, however, lies one step beyond
core probability theory, and belongs
to the theory of estimation of statisti-
cal parameters.

The main point of my argument is
very simple, and this is a good oppor-
tunity to explain it to a wide audience.

In a canonical thermodynamical
system, the temperature is a param-
eter that is, of course, determined
exactly and is a characteristic of the
heat reservoir. The energy E is a
canonical random variable whose
probability takes the form

PE|f)=a(BE)e PPZY(p)

where o(E) is the density of states,
[ =1/kT (with k the Boltzmann con-
stant and 7'the absolute temperature)
and Z(f) is the partition function. In
this case the energy fluctuation is
usefully measured by its variance,

namely its second moment centered
on the first moment. Now consider a
closed microcanonical system, that is,
a system whose energy E is fixed. As
the outcome of an approximate calcu-
lation, whose motivation and details
do not matter, Ludwig Boltzmann
attached to this system the inverse
temperature we shall denote by S,
which satisfies

Tt dlog Z(5)
ap B=8,

The approximate calculation of Josi-
ah Willard Gibbs, on the other hand,
attached a different inverse tempera-
ture to a closed system, namely

» _ dlog a(E)
& JE

For increasingly large systems, the
disagreement between Boltzmann
and Gibbs becomes asymptotically
negligible. This can be shown, for
example, by a Darwin-Fowler steep-
est-descent argument. I proposed to
accept the disagreement for small
systems as an irreducible part of
thermodynamics, and to interpret a
quantity of the order of magnitude of
the disagreement—it could be the
“error term” in the Darwin-Fowler
argument—as a new kind of fluctu-
ation. I'll now elaborate on this
“error term” by showing how one can
interpret it in terms of mathematical
statistics.

For a closed system in equilibrium
(that must not split into noninteract-
ing parts), one aspect of the notion of
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thermodynamic equilibrium is as fol-
lows (in reference 2 this aspect is en-
throned as a generalized “zeroth prin-
ciple” of thermodynamics): ‘“Irre-
spective of how such a system was
actually prepared, its future behavior
will be exactly the same.” For exam-
ple, it will behave exactly as if it had
been taken away from being in con-
tact and in equilibrium with some
heat reservoir, in which case the
system’s fixed energy is a sample
value of a canonical random variable.
I argued that to define a temperature
for such a closed system is to make an
estimate (that is, an informed guess)
of the value of the canonical tempera-
ture of a heat reservoir with which
one may assume in calculations our
system had been in contact” In
statistics, an estimate of f is written
as f. The meaning of the process of
estimation has been thoroughly dis-
cussed in statistics and need not be
tackled from the ground up. Two
facts emerge. First, the procedure is
intrinsically and unavoidably inde-
terminate: It does not allow a unique
solution. Second, its formulas follow
precisely the paths taken by Boltz-
mann and Gibbs.

Many estimates identify the ob-
served E with some “typical value” of
a canonical energy of parameter f.
One statistician will interpret “typi-
cal value” as “expectation,” and he
will recommend Boltzmann’s value
B,. This value is also obtained as a
“maximum likelihood” estimate and
it is “unbiased,” meaning {5,>=p4.
But a second statistician will instead
interpret “typical value” as “the most
likely value,” also called the “mode.”
He will recommend as the estimate
Gibbs’s value 3,. These two statisti-
cians, and others who would give
different recommendations, will also
tell the physicist something that we
know he expects: that in an infinitely
large system, all sensible recommen-
dations agree. The statisticians call
them “consistent”—and Kittel may
call them “consensual.” On the other
hand, for small systems, the statisti-
cians grant that a fog of uncertainty is
simply unavoidable. N .

In a canonical system, 2, and £,
are functions of E. Hence they are
random variables, and each has a
well-defined variance. It turns out
that there is a lower bound to this
variance, given by a theorem called
the Cramér-Rao inequality” or the
Fisher-Fréchet-Dugué-Rao-Cramer
inequality. (It is discussed, often un-
der “statistical efficiency,” in every
advanced book on mathematical sta-
tistics.) Applied to a single sample
and to an unbiased estimator, that

is, assuming <f> =/, this theorem
yields
(B—pBrR>>F!

The factor F' is called Fisher’s infor-
mation (after Ronald Fisher); hence
the alternative term “information
inequality” for this formula (see the
first book listed in reference 3). In the
present, special case, the Gibbs distri-
bution, F happens to simplify to

<3]c|gZ)2
F=|E4+——| PEHIE
j( + % (E|B

When this simplified F'is taken as a
function of 3, it simply reduces to the
variance (E*>. What statisticians do
next is to “invert” and take F as a
function of E. The inversion’s concep-
tual justification has been discussed
endlessly, but it is now agreed® that
inversion does not reduce statistical
fluctuation to probabilistic variance.
To achieve such a reduction would
have been nice—but it cannot be
done. Statistical fluctuation is a no-
tion that is one step beyond core
probability, which is perhaps why it
has worried Kittel. Nevertheless a
physicist should not mind if two
notions of fluctuation that are concep-
tually distinct are combined into one
complementarity relation. The com-
bination yields

AEA(S) =1
and

AEAL/T) > k

When a canonical system is of
extremely large size n, one has E « n
and AE « n'’?; hence the relative
energy fluctuations AE/E and the
inverse temperature fluctuations
both are proportional to n'* and
are negligibly small.

An imperfectly defined microca-
nonical temperature with a well-de-
fined fluctuation may at first seem
strange, but there should be no insur-
mountable difficulty in achieving con-
sensus on its behalf.
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