

student works in private industry or government while attending graduate school, are rare and often are discouraged by the department or the employer.

Graduation usually improves finances, yet physicists must now face a new array of problems. Unstable business and government policies have contributed to the image of the scientist or engineer as the "migrant worker" of the professional field. Proprietary employment agreements place severe restrictions on the mobility of technical workers. A number of companies with strong research images are now "pimping" their technical staffs for government contracts at \$180 000 per man-year rather than using these staffs to create new products and jobs. Most of these policies are aimed at fostering short-term corporate profitability rather than at improving our industrial and scientific position with respect to the rest of the world.

Unlike the Institute of Electrical and Electronics Engineers, the American Bar Association or the American Medical Association, The American Physical Society has long been dormant in trying to improve the quality of its members' lives. Too often the society has promoted physics rather than physicists. This, I believe, has led to the large decrease in the number of American graduate students and the subsequent decline in American technological preeminence.

MARK S. MILLER
5/88
Edina, Minnesota

THE EXECUTIVE SECRETARY OF APS REPLIES: The American Physical Society exists to "advance and diffuse the knowledge of physics" and has carried out that purpose primarily by publishing journals and holding meetings. Since the 1970s, however, APS has recognized that providing support for the education, training and careers of physicists is a necessary and appropriate aspect of its mission. APS and the American Institute of Physics have undertaken several low-key activities useful to physics graduate students and to physicists seeking employment.

AIP's education and employment statistics division obtains and provides data on graduate programs and on physics as a profession, and regularly reports the findings. Working with this AIP division, the APS committee on opportunities recently completed a survey of physics department chairs. Data have been extracted from the survey's results on the availability of both jobs and candidates in the subfields of physics. A

report on the survey will appear in a future issue of the *Bulletin of The American Physical Society*. AIP's career placement service, which is available to APS members free of charge at meetings and at AIP's New York headquarters, offers job listings, arranges interviews and provides individual counseling.

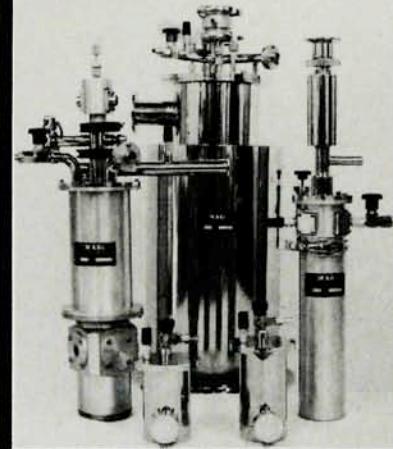
Efforts on behalf of women and minorities in physics, prizes and scholarships, and the matching membership program are other examples of what APS does for individual physicists.

Unlike APS, organizations such as IEEE and the AMA have the same tax status as a trade union (501-C6 status). Because they exist primarily for the benefit of their members, these organizations can provide "quality of life" services that APS is not permitted to offer and for which APS does not have the resources. The APS council has periodically considered and debated the benefits to physics and physicists of changing its IRS status, but has always overwhelmingly rejected such a move. Among the effects of such a change would be a sizable increase in APS membership dues, because tax-free status would be forfeited and more income would be needed to support existing services. APS values its identity as a public-interest organization, and expects to continue in its role as a promoter of physics.

WILLIAM W. HAVENS
The American Physical Society
11/88
New York, New York

Where the Academic Elite Meet to Inbreed

On 26 October 1987, *US News and World Report* published a list of the top colleges and universities in the United States.¹ This ranking of the so-called "best" created a mild furor in academic circles.² Once again the issue of the validity of ranking faculty, academic programs, and colleges and universities emerged.


In the November 1983 edition of *Changing Times* a listing of the most highly regarded doctoral programs in 32 academic disciplines was presented.³ These rankings were based on a five-volume study published by the National Academy Press.⁴ Entitled "An Assessment of Research-Doctorate Programs in the United States," this study reviewed 2700 PhD programs in 32 disciplines ranging from anthropology to zoology.

In the ratings reported by *Changing Times* two key measures of repu-

continued on page 116

Cryo

QUALITY
STEP
BY
STEP
BY
STEP

CUSTOM MANUFACTURE DESIGN,
AND THEORETICAL ANALYSIS-
PERFORMANCE BY DESIGN.

FLOW CRYOSTATS AND CRYO
WORKSTATIONS

STORAGE DEWAR MOUNT
WORKSTATIONS

RESEARCH DEWARS AND
CRYOSTATS

LIQUID HELIUM TRANSFER LINES
HIGH VACUUM CHAMBERS
TEMPERATURE SENSORS
ELECTRONIC DIP STICK
CRYO CONTROLLER
DETECTOR DEWARS
PLUS MORE !!!!!

**CRYO
INDUSTRIES**

of America, Inc.

24 Keewaydin Drive
Salem, NH 03079

TEL: (603) 893-2060
FAX: (603) 893-5278

QUALITY CONSTRUCTION WITH
LOWER PRICES THROUGH
EFFICIENT MANUFACTURING.

Circle number 12 on Reader Service Card

continued from page 15

tation from the National Academy study were combined: The first, "faculty quality," assessed how professors around the country rated their peers in the same discipline; the second, "program quality," assessed how well the faculty thought each program educated research scholars and scientists. *Changing Times* combined these two measures and derived a ranking of the top 10% of the programs in each discipline. For physics *Changing Times* listed the top 12 departments based on scores derived from the National Academy study. If one goes by the assumptions of the *Changing Times* article, the 12 schools with the highest combined scores represented the "academic elite" in physics, the 12 "best" programs in the country.

Given the subjective nature of the evaluation process that produced the National Academy ratings, I decided to examine the composition of the faculties of the top 12. I suspected that these departments would be substantially linked to one another by hiring one another's graduates, and hence enhancing one another's reputations. I also expected that among the academic elite there would be a high degree of academic "inbreeding"—the hiring of graduates from one's own program.⁵

I used the American Institute of Physics report 1986-1987 *Graduate Programs in Physics, Astronomy and Related Fields*⁶ as the basis for my analysis. It soon became obvious that there were numerous interrelationships among departments in terms of where the faculty had received their doctoral degrees. The table presented on this page lists the top-ranked departments and indicates the percentages of full-time faculty members who received their doctoral degrees from one of the "elite" departments on the list (which includes those who received their degrees from the same departments where they are currently on the faculty).

As can be seen in the table, in all of the top-ranked departments a substantial proportion of the faculty had received their PhDs from a member of the "academic elite." MIT had the highest percentage of holders of degrees from the top-ranked departments (83.0%), and the State University of New York, Stony Brook, had the lowest (49.2%). At most of the schools anywhere from two-thirds to three-quarters of the faculty had graduated from one of the prestigious programs.

The table also addresses academic inbreeding among the top-ranked

'Inbreeding' among top-ranked physics departments

Rank	Department	N	Percentage	Number produced ³
			Elite ¹	Own ²
1	Harvard	41	73.2	24.4
2	Caltech	49	67.3	12.2
2	Cornell	49	71.4	14.3
2	Princeton	47	74.5	31.9
3	MIT	88	83.0	39.8
4	Berkeley	79	73.4	29.1
5	Stanford (physics)	23	60.9	17.4
6	Chicago	47	66.0	8.5
7	Stanford (applied)	12	75.0	25.0
8	Illinois	93	60.2	4.3
9	Columbia	29	58.6	20.7
10	SUNY, Stony Brook	61	49.2	0.0
Totals		618		421

¹Percentage of faculty who received PhDs from one of the 12 top-ranked programs.

²Percentage of faculty who received PhDs from the program in which they are now employed.

³Number of PhD recipients from the program who were on the faculty of one of the top-ranked programs in 1986.

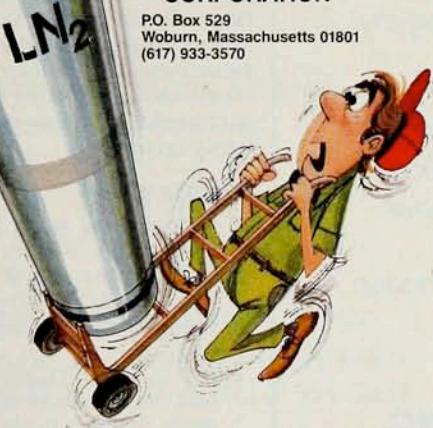
physics programs. Bernard Berelson⁷ and Theodore Caplow and Reece J. McGee⁸ have demonstrated that a high degree of inbreeding among elite schools is not accidental. According to both studies, if elite programs are to maintain their prestige, they cannot hire a large number of PhDs from lower-ranked departments, and this would include PhDs from upwardly mobile "middlemen" programs whose elite credentials have yet to be established. George R. Gross in his study of sociology departments found that the higher the prestige of a department, the greater the proportion of "home-grown" graduate faculty.⁹ With some modifications, David Shichor's study¹⁰ confirmed Gross's findings. Shichor found the relation between departmental inbreeding and the prestige of a department in sociology to be curvilinear, with the highest and lowest-ranking departments having the highest rates of inbreeding, while midlevel departments were found to have the lowest rates. Not surprisingly, my inbreeding findings for physics programs were almost identical to those for sociology.

As can be seen, the school with the largest percentage of its own graduates on its full-time physics faculty was MIT (39.8%). Princeton University also had a rather large percentage of its own graduates on its physics staff (31.9%). Stony Brook had not hired any of its own graduates.

I also determined the number of PhDs produced at each department who were on the full-time faculty of one of the elite departments in 1986. These numbers also are presented in the table. Berkeley had 73 of its graduates in faculty positions at elite physics departments. MIT and Harvard followed with 64 and 63, respectively. Stony Brook and the Stanford

applied physics program had the least, with 3 each.

I think that graduate departments in physics (or in any discipline) must rely to a large extent upon their reputations to attract highly qualified faculty and graduate students to participate in their programs. The 12 physics graduate programs that were top ranked in the 1981 National Academy study are undoubtedly strong programs. I certainly do not wish to argue that they are not. However, the data suggest that a number of subjective factors influence the procedure by which academic departments are ranked. Primarily, I contend that a rather small group of institutions (12 in this case) tend consciously or unconsciously to enhance one another's reputations by hiring one another's graduates. The study cited by *Changing Times* used two measures of reputation to establish its list of the "best" graduate departments: how professors rated their peers in the same discipline, and how well the faculty thought each program educated research scholars and scientists. These criteria are vitally linked; when elite faculty are asked to rate their peers at other schools, they are, to a large extent, rating their former professors or students.⁵ There are a total of 618 full-time faculty in the physics elite, and 421 of them (68.1%) graduated from one of these distinguished programs. Clearly it is in their best interest to rank their alma mater highly.


Ultimately, I think it should be asked, Are the 12 highest-ranked programs indeed the best PhD programs in physics, or do they comprise an "academic elite" with a large number of faculty members in the discipline and an obvious interest in perpetuating the present ranking sys-

Get Rid of LN₂ Cylinder Handling...

On MBE with
recirculated LN₂ in
SEMIFLEX/Triax
Vacuum Insulated Pipe,
from

VACUUM BARRIER **VBC**
CORPORATION

P.O. Box 529
Woburn, Massachusetts 01801
(617) 933-3570

Circle number 64 on Reader Service Card

NEW - The First Handheld Digital Magnetometer for Under \$500!

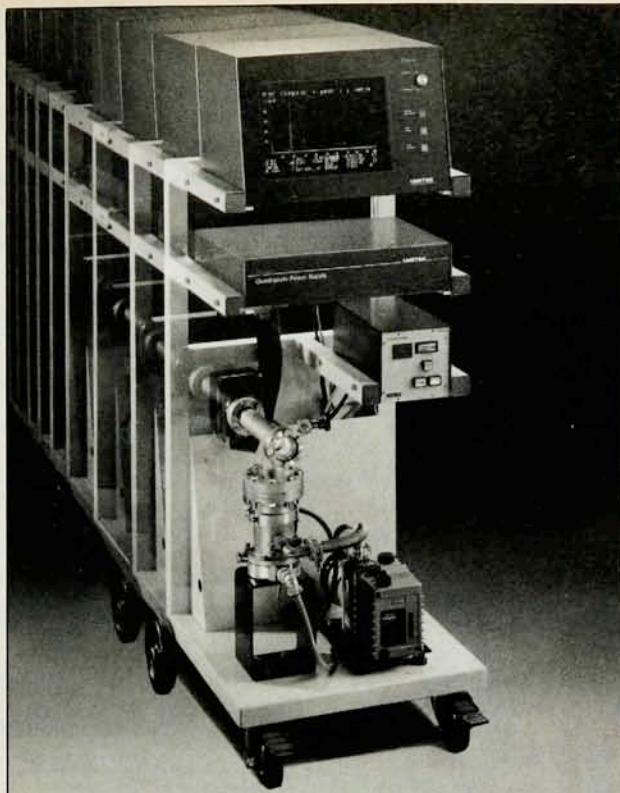
The μ MAG measures magnetic fields from 1 gamma (1 nT) to 2 gauss (200 μ T)

Features

- Three full scale ranges: 2000, 200, 20 milligauss
- 3-1/2 digit LCD display
- 0.5% absolute accuracy
- Analog output
- Portable, battery powered

Applications

- Inspect packages/materials
- Test shielding effectiveness
- Classroom demonstrations
- Field mapping
- Magnetic environment monitoring



Priced affordably at \$495 per unit quantity.

To order μ MAG, call today: (703) 471-1445

MEDA Macintyre Electronic Design Associates
11260 Roger Bacon Drive, Reston, VA 22090

Circle number 65 on Reader Service Card

Now quadrupole gas analysis, to go!

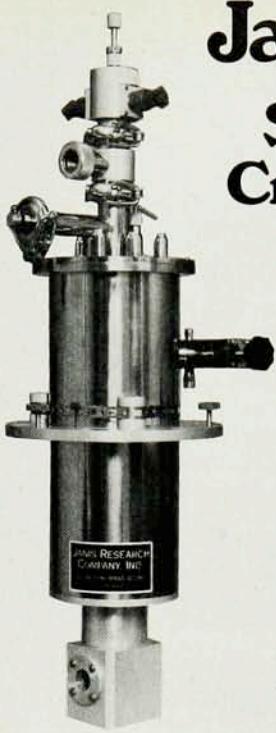
Now, in addition to high performance rack-mount and bench models, Ametek can also offer you a mobile Dycor™ Quadrupole Gas Analyzer.

A perfect, go-anywhere, microprocessor-based mass spectrometer that can handle all your gas analysis, process monitoring, or leak detection applications.

And tell you in a glance at the high resolution display—exactly what's in your sample, off-gas, or vacuum system.

Standard Features

- 1-100 AMU Mass Range
- Faraday Cup Detector
- 100% Front Panel Control
- High-Resolution CRT Display
- Graph or Tabular Data Display
- RS232 Computer Interface
- 5×10^{-12} Torr Minimum Detectable Partial Pressure
- Background Subtraction


Optional Features

- 1-200 AMU Mass Range
- Pressure vs Time Display
- Graphics Printer For Hard Copy
- Electron Multiplier
- 5×10^{-14} Torr Minimum Detectable Partial Pressure
- Sample System For Higher Pressures

For literature, contact AMETEK, Thermox Instruments Division, 150 Freeport Road, Pittsburgh, PA 15238. Tel: (412) 828-9040.

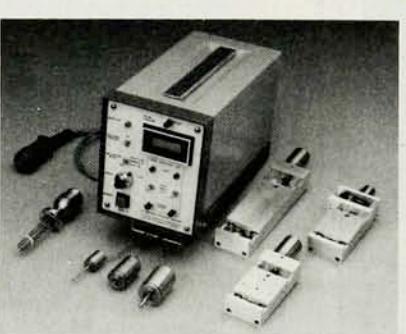
AMETEK
THERMOX INSTRUMENTS DIVISION

Circle number 66 on Reader Service Card

Janis Quality!

SuperVaritemp Cryostat Systems

- 1.5-300 K temperature range.
- 5 Watt cooling capacity.
- Optical access along any direction.
- 0.75" O.D. tails for magnetic measurements.
- Fast sample interchange.
- Automatic temperature control.
- Low helium consumption.
- Reliable proven performance.


JANIS RESEARCH COMPANY, INC.

2 Jewel Drive, Wilmington, MA 01887 • Tel: (508) 657-8750 • Telex: 200079 • Fax: (508) 658-0349

Circle number 67 on Reader Service Card

Princeton Research Instruments, Inc.

IN-VACUUM MOTION SYSTEMS

Unique in-vacuum stepper motors and accessories provide rotary or translational motion in high and ultra high vacuum without the use of the more traditional mechanical feedthroughs. Features include:

- Motor operation in vacuum as low as 4×10^{-10} torr.
- Maximum bakeout and operational temperature of 150° C.
- The motors can be placed anywhere, thus allowing compound motions that are otherwise impossible.
- The motors and motorized slides can be quickly and easily relocated to suit experimental needs.
- The motor driver electronic package is specifically designed for in-vacuum motors.
- The system is ideal for control with a remote controller or computer.
- All products are normally in stock for immediate delivery.
- Our engineers are glad to discuss your particular application.

PRINCETON
RESEARCH
INSTRUMENTS

(609) 924-0570
P.O. BOX 1174 PRINCETON, N.J. 08542

Circle number 68 on Reader Service Card

tem? The data suggest that the latter is true. Two final comments seem in order. First, I contend that because of their subjectivity, current ranking systems are a detriment to the discipline. They may impede professional mobility, reward status over achievement and result in programs of lesser renown being bypassed, even though they may merit as high or higher recognition than do those of the elite. Second, I believe that current, subjective ranking systems incorporate serious distortions and misrepresentations. Because they have the potential to do as much harm as good, I recommend that as they are presently constituted, subjective systems of departmental ranking should be routinely ignored.

References

1. US News and World Report, 26 October 1987, p. 49.
2. S. Heller, Chronicle of Higher Education 34(4), A15 (1987).
3. Changing Times, November 1983, p. 64.
4. L. V. Jones, G. Lindzey, P. E. Coggshall, *An Assessment of Research-Doctorate Programs in the United States: Mathematical and Physical Sciences*, Natl. Acad. P., Washington, D.C. (1982).
5. J. H. Bair, W. E. Thompson, J. V. Hickey, Curr. Anthropol. 27, 410 (1986).
6. 1986-87 *Graduate Programs in Physics, Astronomy and Related Fields*, AIP, New York (1986).
7. B. Berelson, *Graduate Education in the United States*, McGraw-Hill, New York (1960).
8. T. Caplow, R. J. McGee, *The Academic Marketplace*, Anchor-Doubleday, New York (1965).
9. G. R. Gross, Am. Sociologist 5, 25 (1970).
10. D. Schichor, Am. Sociologist 5, 157 (1970).

JEFFREY H. BAIR

Emporia State University

Emporia, Kansas

Corrections

November, page 17—In the news story about ultrahigh-energy cosmic gammas, the photo credit on page 17 should have referred to the University of Athens-Columbia-Purdue-University of Wisconsin collaboration. On page 20 the rest-mass limit on the particles from Hercules X-1 should have been stated to be $1/20$ the neutron mass. The journal in reference 7 (page 21) should have been *Physical Review B*.

October, page 20—In the penultimate paragraph of the news story about *CP* violation experiments, the upper limit on ϵ'/ϵ should have been given as 1×10^{-2} . ■