How Broadly to Take Temperature?

Charles Kittel's Opinion piece (May 1988, page 93) disputing the concept of fluctuating temperature also questions any use of the concept of temperature in describing the behavior of small systems. His general point of view seems to me quite reasonable, but a conclusion about what to call 'small' requires some knowledge of the actual systems in question.

Let us agree to limit the use of emperature to systems possessing an energy reservoir that can be shared tatistically, and also possessing a mooth density of states whose logwithm varies linearly with excitaion energy over a substantial range. These conditions appear to be satisied for heavy nuclei excited to severil tens of MeV of energy, even though hey contain a small number of parti-:les. For example, at an excitation of 50 MeV there should be about 1028 evels per MeV in a nucleus of mass number 200, and the density should ncrease by a factor of e for an inrease of 1 MeV, roughly, in excitaion energy. How do we make a heat eservoir? When the nucleus emits a neutron, its energy distribution is letermined by the density of daugher states. In effect, the nucleus exchanges energy statistically with he freed neutron. The neutron enery spectrum then falls off with the actor e for each MeV increase in nergy. Empirically, behavior like his is observed over several decades f the probability distribution. Dare ve call this a Boltzmann factor with a emperature T = 1 MeV? The reader nust judge for himself.

> GEORGE F. BERTSCH Michigan State University East Lansing, Michigan

ife Styles of the Rich and Physicists)

/88

he of the most important issues elating to the strength of our scienific establishment is that of quality
f life. I feel that this issue, more han the quality of high school science astruction, is responsible for the

current state of technology in our country.

While success in law, business and medicine is often measured in six figures, pay levels in skilled labor jobs often equal the salaries paid scientists and engineers. Today, it is not uncommon to find carpenters, plumbers or electricians whose average yearly pay is in the \$40 000-\$50 000 range. *R&D* magazine in its yearly poll of over 1900 readers found that the average scientist or engineer with 17 years of experience and a master's degree earns between \$45 000 and \$50 000.

Salary is but one facet in the quality-of-life debate. The educational establishment often forces a prospective physicist into a monastic life of poverty, chastity and obedience. This begins in the undergraduate program, where the science and math requirements leave little time for the student to educate him- or herself about the rest of the world. Lack of education in other areas limits career growth as well as contributes to the image of the physicist as a one-dimensional intellectual.

For most physicists, graduate school represents a financial as well as an intellectual challenge. It is not uncommon for students to postpone marriage and starting a family while in graduate school, especially if the prospective spouse does not work. Often, little guidance is offered to a student about permanent job propects in his or her thesis concentration area. We all know of areas in physics that offer only postdoc-type positions. The time it takes to complete a doctorate in physics is longer than in related fields like mathematics and engineering. Is this due to academic rigor or to the lack of graduate students?

A number of graduate departments, through misguided policies, actually increase the difficulty of graduate life. The qualifying examination process often can be dragged out over two years or longer. If a student receives an additional research scholarship or grant from an outside organization, the student is often limited in what additional funds he or she may receive from the department. Joint programs, where a

BERKELEY NUCLEONICS CORE PULSE GENERATORS AND NIM POWER SUPPLIES SHORT FORM CATALOG

BNC pulse generators offer shaping, rate, and amplitude features rarely found elsewhere. Find out the whole story by requesting your free copy of BNC's latest catalog. NIM Power Supplies also included.

Berkeley Nucleonics Corp.

1198 Tenth Street Berkeley, CA 94710 Telephone (415) 527-1121

Circle number 10 on Reader Service Card