BOOKS

by Bohr. It is the one found in most texts and is usually presented without criticism. Never fully explicated and in many respects left ambiguous by Bohr and his collaborators, the Copenhagen interpretation has encountered considerable conceptual difficulties upon closer examination. The potentiality view was proposed by Werner Heisenberg and is sometimes called quantum realism (to be clearly distinguished from the classical realism advocated by Albert Einstein). These three views violate different definitions of locality; each view requires nonlocality in a different sense. The author does not advocate one particular view but leaves the choice to the reader.

This very carefully written book clears the metaphysical fog where most needed. Redhead has managed to squeeze a great deal into less than 200 pages. But I would have liked a longer book. The author excluded the problem of the reduction of statesthe collapse of the wavefunctionbeyond a very clear mathematical statement of it; that is understandable given the difficulty of that yet unsolved problem. But I can see no good reason for the author to exclude his own very attractive proof of the peaceful coexistence of the apparently contradictory concepts of nonlocality and special relativity (which demands a finite propagation velocity of signals). But this is not a serious criticism. The book is attractive and remarkably free of misprints (I found only four), but it is expensive. In summary, I believe that Redhead's book belongs in the collection of everyone seriously interested in the foundations of quantum mechanics.

> FRITZ ROHRLICH Syracuse University

Dynamics of Proteins and Nucleic Acids

J. Andrew McCammon and Stephen C. Harvey Cambridge U. P., New York, 1987. 234 pp.

\$39.50 hc ISBN 0-521-30750-3; \$19.95 pb ISBN 0-521-35654-0

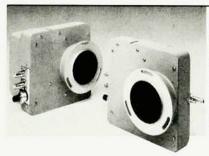
Our picture of biological matter has undergone many revolutions since the last century, when even the discrete molecular nature of proteins was in doubt. By the 1970s, through the techniques of x-ray crystallography, an architecturally beautiful, but static, picture of proteins and nucleic acids had come into being and indeed made contributions to central problems of biology. What was lacking

EG&G PARC's

The Latest On Optical Multichannel Analyzers And Accessories

New, Enhanced IBM-Compatible Software

EG&G PARC's M1461/90 software package takes full advantage of the personal computer (including the PS/2) in acquiring data with the OMA III 1461 buffered interface. This configuration of OMA, PC, and M1461/90 software provides cost-effective, sophisticated parallel light detection that is simple, yet powerful enough to run the most complex OMA experiments.


Some key features of this exciting new software include:

- REAL-TIME Live Display
- Direct Storage to RAM or Hard Disk
- Sophisticated Print-Plot-Display
- Spectrum-based Data Manipulation

 DAD... Custom Data Acquisition Design Ability

OMA III systems including a 512-element detector and the M1461/90 software start as low as \$13,000. M1461/90 software runs on the IBM PC, XT, AT, PS/2 and most compatibles.

OMA Line Extended With New, Low-Cost, High Performance Detectors

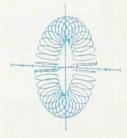
M1455A and M1456A, the latest editions to our family of OMA detectors, provide low-cost, variable gain, inten-

sified linear diode array detection in applications that require high sensitivity over the entire UV-VIS range, fast time resolution or rejection of ambient background light.

Both detectors feature many significant enhancements:

- Operating Temperature: -5C; -35C with Liquid Assist
- Precision Variable Gain Control
- Improved S/N... Exclusive COOL CATh[™] Reduces Photocathode Noise
- Wide Range Of Intensifiers: Spectral Sensitivity And Time Resolution (Gating) Can Be Optimized To Match Your Specific Experimental Requirements.

For more information, contact your local PARC sales representative or call us at (609) 452-2111.


P.O. BOX 2565 • PRINCETON, NJ 08543-2565 • (609) 452-2111

United Kingdom 0344 / 423931 • Canada (416) 475-8420 • Netherlands 030 88 7520 West Germany 089/926920 • France 1/60/779356 • Italy 02/7386294 IBM is a registered trademark of the International Business Machines Corporation

J07007

MAG-P

MAG-PC is a 3-D magnetic fields solution program for the IBM-PC.

MAG-PC is ideal for designing and experimenting with different coil configurations to produce a desired magnetic result. Applications include high energy physics, focussing systems, and superconducting magnets.

MAG-PC is an inexpensive, well-documented, dependable tool which requires no computer expertise or complex procedures to run.

MAG-PC installs in ten minutes, and includes three application samples on diskette and a tutorial. The average amount of time needed to become familiar with MAG-PC is one hour.

Using cursor keys and menus, the user enters coils of any shape anywhere in 3-D space. Then, the user chooses the region to be analyzed, and MAG-PC provides the results. These results can be displayed graphically or as tables. In addition, results can be output to an ASCII file for use with programs such as Lotus 1-2-3TM, or to a printer for reports.

standard version \$289 US (pre-set accuracy; no coil preview)

enhanced version \$899 US (user defined accuracy; coil preview: displays coil from any angle)

MAG-PC is not copy-protected, and includes software, manual, and application samples. Requires 256k, math co-processor, and CGA.

Phone orders: (514) 849-8752 Send P.O. or cheque to:

1500 Stanley St., Suite 430 Montreal, Canada, H3A 1R3

Circle number 60 on Reader Service Card

was a description of the four-dimensional structure of biomolecules as moving, fluctuating collections of atoms. A little over a decade ago such a new picture began to emerge. It is based on the application of the ideas of condensed matter and chemical physics to proteins and nucleic acids. Dynamics of Proteins and Nucleic Acids by Andrew McCammon and Stephen Harvey is an authoritative survey of this new paradigm, leading us from the structural foundations and theoretical underpinnings to the most modern work in this extremely

active area of inquiry.

Like earlier revolutions in the understanding of biological molecules, the dynamical picture was made possible by new developments in technology. The key tool for investigating biomolecular dynamics is computer simulation based on the molecular dynamics approach. Despite earlier speculations and inferences from experiment by insightful prophets, the revolution was taken to the masses only when McCammon, along with Martin Karplus and other collaborators at Harvard, carried out largescale simulations of the dynamics of a protein in 1978. What distinguished that study from other essays in biomolecular physics was its use of the sophisticated language and viewpoint that had been developed in the statistical mechanics community for describing the fluctuations of manybody systems. The same thoughtful style characterizes this book. [See also the article by Karplus in Physics TODAY, October 1987, page 68.]

The complexity of biomolecules is daunting to many a physicist. A nice feature of this book is that it leads the reader patiently from the fundamentals onward. It provides a simple and rapid introduction to basic structures of biological molecules. There is also a good orientation to the kinds of biochemical processes that biomolecules take part in. Similarly, the book gives a lucid introduction to the various techniques of computer simulation and statistical mechanics that are used in the field. Excessive formalism is avoided, but enough information is given to make the subject understandable.

A major part of the book is a tour through the enormous quantity of information that has resulted from theoretical studies on biomolecules. The authors have done a good job of organizing this tour and of guiding the reader to the literature for still more detail. The main problem here is that because the picture is new it is still hard to discern a unifying theme for understanding biomolecular dynamics.

McCammon and Harvey do a good job of explaining the interplay between experiment and theory in biomolecular dynamics. This is a difficult task because of the many experimental techniques in use-they include photochemical studies, nmr and other spectroscopic techniques.

Where is the dynamical picture of biomolecules leading? McCammon and Harvey give us some of their views, but-properly-they hold speculation to a minimum. Certainly no great biological puzzle has yet succumbed to analysis with the new paradigm. Insights into the extreme facility and specificity of enzymatic catalysis may someday be expected from this picture. The solution of the great structural problems of how the genetic information of DNA encodes the three-dimensional structures of proteins may be achieved with computer simulation techniques like those discussed in the book. We are far from these goals. Anyone who wishes to take part in the adventure of achieving them should read this book.

PETER G. WOLYNES University of Illinois, Urbana-Champaign

Quantum Theory of Finite Systems

Jean-Paul Blaizot and Georges Ripka MIT P., Cambridge, Mass., 1985. 657 pp. \$47.50 hc ISBN 0-262-02214-1

Quantum Many-Particle Systems

John W. Negele and

Henri Orland Addison-Wesley, Redwood City, Calif., 1987. 459 pp. \$46.25 hc ISBN 0-201-12593-5

Both of these excellent books are well suited for a graduate course in many-body theory; both are characterized by mathematical elegance. Quantum Theory of Finite Systems is "admittedly influenced by the prevailing style at the Service de Physique Théorique in Saclay." That style is a legacy of Augustin Louis Cauchy, who was a professor at the Ecole Polytechnique, from which most of the Saclay physicists come (though not the book's authors). Although Quantum Many-Particle Systems originated from lectures at MIT, it is, if anything, more elegantly mathematical than the first book.

Both books have excellent discussions on coherent states. John Negele and Henri Orland use Feynman path-