

Elementary Particles," dissertation, U. of Calif. at Santa Cruz (1987).

8. D. Beau, S. Horachi, C. R. Acad. Sci. Ser. A **281**, 183 (1975).

THOMAS R. LOVE
Daemen College
Amherst, New York

11/87

SCHWARZ REPLIES: I should have said "compact simple Lie groups."

JOHN H. SCHWARZ
California Institute of Technology
Pasadena, California

5/88

GLASHOW REPLIES: I have no idea how to build a meaningful gauge theory based upon a noncompact real form of SU(5). Neither does Thomas Love.

SHELDON LEE GLASHOW
Harvard University
Cambridge, Massachusetts

5/88

Nature's Indecision on Gravity's Nature

In relation to the article by John H. Schwarz (November 1987, page 33) I would like to raise the following question: Is gravity classical or quantum? Nature should provide the answer. At ordinary energies the gravitational interaction between elementary particles is negligible with respect to the other known interactions. At energies comparable to the Planck energy gravitation might have dominated. According to the standard model for a radiation-dominated universe, the age t of the universe is related to its energy density ρ by

$$t = \frac{1}{2} \sqrt{\frac{3c^2}{8\pi G\rho}}$$

and the distance to the horizon is $2ct$. According to the Planck distribution, radiation at temperature T has an energy density

$$\rho = \frac{\pi^2}{30} \frac{(kT)^4}{(\hbar c)^3} \left(N_b + \frac{7}{8} N_f \right)$$

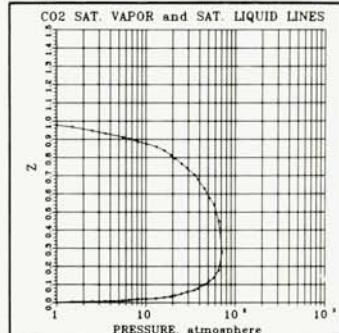
and a particle number density

$$n \approx 0.218 \left(\frac{kT}{\hbar c} \right)^3 \left(N_b + \frac{3}{4} N_f \right)$$

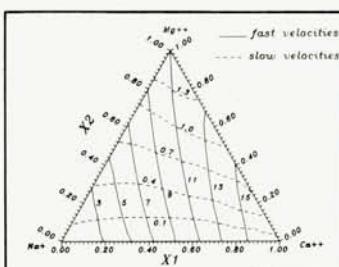
where N_b and N_f are the number of boson and fermion degrees of freedom (including spin), respectively. Combining these equations, we find the number of particles within the horizon when the universe had temperature T :

$$N \approx 0.11 \left(\frac{T_p}{T} \right)^3 \frac{N_b + \frac{3}{4} N_f}{(N_b + \frac{7}{8} N_f)^{3/2}}$$

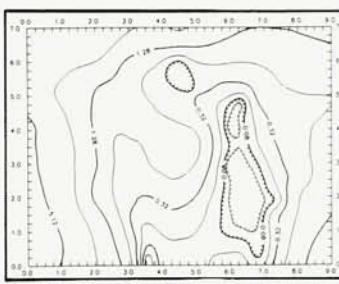
where T_p is the Planck temperature. Note that N is less than 1 when $T = T_p$. Thus at the Planck temperature, where quantum effects of gravity

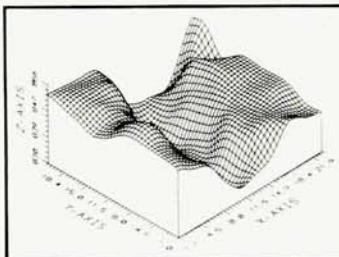

may have been important, particles did not yet have time to interact.

Is gravity classical or quantum? Perhaps Nature never answered this question.


BRUCE HOENEISEN
Universidad de Guanajuato
Leon, Mexico

12/87


SCIENTIFIC GRAPHICS


Linear-linear, log-linear, linear-log, and log-log graphs may be displayed with **GRAPHER**. Over 20,000 points may be displayed on one graph.

With **GRAPHER** you may place axes and text anywhere. Each graph component may be rotated to any angle and scaled to any size.

SURFER quickly and easily creates contour maps from your irregularly spaced XYZ data. You may specify axes with tick marks and labels, position irregular contour intervals, and multiple shaped boundaries.

SURFER has the most impressive 3-D surfaces available. Your 3-D surfaces will brilliantly visualize your data. You may use your own XYZ data or enter an equation to generate a surface.

For the IBM PC & compatibles

GRAPHER \$199
SURFER \$399
Demo/Tutorial Disks \$10

FREE Brochure

Give us a call for a free graphics brochure.
1-800-972-1021 (or 303-279-1021)

GOLDEN SOFTWARE, INC.
807 14th St., Golden, CO 80401

Purchase orders are welcome.

Circle number 16 on Reader Service Card

nique that has played an essential role in the analysis of the internal motions of proteins because most of the relaxation *processes* are on the nanosecond to picosecond time scale." (I have added the italics for the purposes of this reply.)

At a later stage, the offending phrase "for example, the transverse relaxation time T_1 " was introduced after "processes." I am grateful to Mulkern for catching this error.

MARTIN KARPLUS

Harvard University
Cambridge, Massachusetts

3/88

Do the Best Physicists Spot the Best Talent?

Although I agree with Philip Anderson's view (September 1987, page 7) that the postdoc application process is too unwieldy, I think he fails to make a crucial point. Deciding which members of the current crop of PhDs are most likely to do original research in the future requires an understanding of people far more than of science. This is because (among other things) a new PhD has typically produced little or nothing independently, and an objective assessment of his or her scientific ability is essentially impossible. At the same time, we all know scientists, even superb ones, whose judgments about people are consistently less than astute. Thus I am very uncomfortable with Anderson's suggestion that the selection process be made even more informal (and hence error-prone) by limiting letters of recommendation to a single one from the applicant's thesis adviser. A better solution might be to identify one or two people in each department whose "track record" of predicting students' future performance is good. A letter of recommendation from one of these people could be worth a lot more than a letter from the applicant's adviser, no matter how accomplished a scientist that person is.

DAVID MERRITT

Canadian Institute for
Theoretical Astrophysics
Toronto, Canada

9/87

Committees to Aid Oppressed Scientists

I was pleased to see two letters on refusenik news in the October 1987 issue (page 152). I just want to remind the PHYSICS TODAY readership that the APS has in place two programs that give physicists an opportunity to assist oppressed physicists, including

refusenik scientists. One is the Small Committee program of the Committee on the International Freedom of Scientists, which currently consists of 78 committees that have each adopted an oppressed scientist. Small-committee members write to and lobby for their adopted scientist, providing a valuable link between him or her and the Western scientific community. Former refuseniks have repeatedly emphasized the importance of these letters, both for needed moral support and for their practical effect on Soviet officials. Anyone wishing to join a small committee should write to me.

The second program is the matching membership program for scientists from third world or dollar-poor countries. The APS will contribute one half of a physicist's membership fee if an APS member donates the other half. For refusenik scientists, membership in the APS provides another valuable connection to and source of information about the Western scientific community. Anyone wishing to contribute to the matching membership program should send his or her contribution to the APS Membership Department at 335 East 45th Street, New York, NY 10017. I would hope that those of us who are blessed with freedom, financial security and the opportunity to do science are willing to share a very small fraction of our time, wealth and knowledge with those so very less fortunate than ourselves.

BERNARD FELDMAN

11/87 University of Missouri, St. Louis

Questions for Introductory Physics

The project to study introductory physics courses discussed in the May 1987 PHYSICS TODAY (page 87) by Donald F. Holcomb, Robert Resnick and John S. Ridgen is highly welcome—and insufficient. What is needed is consideration of all physics courses (not only those for majors), and more than their content, their rationale. We must be concerned not only about future physicists but also about students who take physics because they want to learn it, and even—especially—about those who do not want to learn it but are required to take it anyway, and perhaps still more about the ones who do not want to take it and do not, but then go on as citizens to make decisions, including ones critical to physics, for which an understanding of it is essential.

More than for physics our concern must be for education. Before we consider the syllabus, before we con-

sider whether to include atomic physics, before we think about what goes into the course, we must think about what comes out, what should come out. What should a well-educated person know and understand about physics, not just before the final, but many years after leaving school? How can that understanding be achieved? What's the purpose of the whole course anyway?

Based on the present courses and books these questions seem never to have been considered, and it shows. If the public feels that science is beyond it, frightening, impossible, incomprehensible, an esoteric subject of interest only to weird characters like us, it is not surprising. Too often that is what we teach.

Why should nonmajors take physics? What should they learn? More important than Newton's laws, atomic physics or electromagnetism is an understanding of nature, of how the universe works, how physicists work. More important is the ability of a person to understand and cope with his world, his own life, his own body.

Isn't it to achieve this understanding that we teach the laws? Isn't this understanding a main reason for education? Can a study of physics aid in achieving it? Does it now? Would our students believe this understanding is valuable? Do they believe now that this is what they are learning?

I regard physics as one of the liberal arts, and believe that my responsibility is not merely to teach Newton's laws but to educate my students. This often differs both from their view of why they are taking physics (it is required) and from the view of the physics community on why these courses are offered (to provide jobs for PhDs who are needed to do their mentors' research while in graduate school but who themselves are not able to get research positions).

The question then is not so much what topics should be in the course or how much emphasis to give to the laboratory, but how we can educate our students. Is knowledge and understanding of physics necessary for a modern educated person? Do we believe so? Do we teach as if we believe so? Why do we have so much difficulty convincing everyone? How can we teach how important this knowledge and understanding are?

One aspect of education is learning skills: the ability to read, write, comprehend; to think logically and rationally; to obtain, process and absorb knowledge; to do things in a careful, organized way; to understand what we are doing; to understand our environment and deal with it. Does