effective ways of presenting physics to the general public.

The Probabilistic Revolution. Volumes 1 and 2

MIT P., Cambridge, Mass., 1987. \$60.00 hc ISBN 0-262-11125-X

Volume 1: Ideas in History

Edited by Lorenz Krüger. Lorraine J. Daston and Michael Heidelberger xv + 449 pp.\$32.50 hc ISBN 0-262-11118-7

Volume 2: Ideas in the Sciences

Edited by Lorenz Krüger, Gerd Gigerenzer and Mary S. Morgan xvii + 459 pp.\$32.50 hc ISBN 0-262-11119-5

Thirty-one American, British, Canadian, Finnish, German and Hungarian scholars, including several wellknown historians and philosophers of science, have invented "the probabilistic revolution," a wonderful historical event that took place during the century and a half after 1800. Even though I. Bernard Cohen and Ian Hacking, who specifically address the question "Was There a Probabilistic Revolution 1800-1930?" cannot bring themselves to give an unconditionally affirmative answer, and though Thomas S. Kuhn avoids mentioning it at all in his brief essay on the nature of scientific revolutions, the idea provides an excellent basis for a coherent collection of articles. The three introductory pieces by Kuhn, Cohen and Hacking will appeal to a wide range of readers; the others are intended for specialists.

Some of the authors attempt to define the essential feature of the probabilistic revolution. Perhaps the most appropriate definition (exemplified by the book itself) is a shift in emphasis from statistical uniformity to fluctuations and individual diversity (Theodore M. Porter and Jan von Plato, seemingly contradicted by Hacking). Other proposals, defended with much skill and copious evidence, are the replacement of the subjectivist concept of probability by the frequentist definition (Andreas Kamlah): the introduction of probabilistic statements about the accuracy of measurements (Stephen M. Stigler); the application of probabilistic con-

EG&G PARC's

The Latest On Optical Multichannel Analyzers And Accessories

New CCD Detector System Extends Sensitivity & **Dynamic Ranges**

The new OMA III CCD Detector system is the spectroscopist's answer to low light level, multichannel measurement and 2-dimensional measurement of low light or high dynamic range

images. Based upon CCD technology, the 1430 can detect extremely low light fluxes and has a dynamic range of better than 10,000:1.

Typical spectroscopic applications:

- Raman
- Luminescence
- Phosphorescence

Typical 2-dimensional applications:

- Streak camera readout
- Picosecond spectroscopy
- Single cell fluorescence

Multitrack and binning features allow the 1430P to match the slit function of a spectrograph. The face of the detector can then be divided into tracks (up to 384 for a full image) each with its own Y_0 and $\triangle Y$ height. Multiple data acquisition modes are available to match the OMA III with an experiment.

Some key 1430P specifications:

- Multiple element configuration (X:576, Y:384)
- Large element size (23 um²)
- Very high gain amplification
- High peak QE of 45%
- Noise: <1 count/\scan
- Operating Temperature: To 50C

Additional features that make the 1430P attractive to the spectroscopist are its compact size, standard internal shutter, frost-free design, and the ability to integrate optical signals for hours without the need for cryogenics.

The 1430P detector is connected to the 1430-1 detector controller which supplies power, detector control, and digitizes the signal. Combined with software modeled on EG&G PARC's popular vidicon software, the OMA III CCD detector is a complete system.

Data acquisition software, BASIC programming plus RS232 and IEEE interfaces provide complete instrument control.

In all, CCD detector users have a complete measurement system that allows sophisticated data acquisition and manipulation with the option to upload data into other computers for specialized data analysis.

For more information about this new low light level CCD Detector measurement system, contact your local EG&G PARC sales engineer or call (609) 452-2111.

Circle number 28 on Reader Service Card

PRINCETON APPLIED RESEARCH

P.O. BOX 2565 • PRINCETON, NJ 08543-2565 • (609) 452-2111

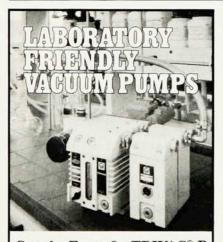
United Kingdom 0344 423931 • Canada (416) 475-8420 • Netherlands 030 88 7520 West Germany 089/926920 • France 1/60/779356 • Italy 02/7386294

J07008

High-Power Equipment

- Modulators
- Microwave Generators
- Grid Pulsers
- Crowbar Systems
- Spark Gap Triggers
- Control Subsystems
- Cathode Pulsers
- High Voltage Pulsers

Thyratron Drivers


Triggered Spark Gaps

IMPULSE ENGINEERING INC.

27 Village Lane, P.O. Box 5037 Wallingford, CT 06492 Telephone (203) 265-4757

Circle number 29 on Reader Service Card

Get the Facts On TRIVAC® B

- Compact Design
- Low Noise Level
- High Vapor Tolerance
- No Oil Backstreaming
- Solvent Resistant Seals

Ask for the 7 Golden Rules for use in Chemical Laboratories

Leybold Vacuum Products, Inc. Export, PA 15632 412-327-5700

Ext. 528

Circle number 30 on Reader Service Card

cepts to many disciplines as distinct from changes in the concepts themselves (Cohen); belief in the lawfulness of vital and social phenomena and in the capacity of statistical methods to uncover this lawfulness (Bernard-Pierre Lécuyer and others); a shift from probability as dealing with judgments of an elite of reasonable men to the behavior of societies that include irrational members (Lorraine J. Daston); and belief in indeterministic statistical causation growing out of a holistic qualitative causation founded on the political-social ideal of Gemeinschaft (M. Norton Wise).

Among the social causes of the probabilistic revolution, according to the authors, were population growth and urbanization, leading to the emergence of mass phenomena best described statistically (Karl H. Metz), and the breaking of the connection between gambling and insurance in association with new middle-class attitudes favoring provision for one's family over provision for oneself (Daston).

Some readers will be surprised to find that physics is given only a minor role in this revolution. The thesis that nature possesses a certain amount of indeterminism independent of our own ignorance of it is discussed by Michael Heidelberger and Lorenz Krüger, but the importance of this thesis is explicitly downgraded by John Beatty, Nancy Cartwright, William Coleman, Gerd Gigerenzer and Mary S. Morgan. They argue on the contrary that the revolution was primarily a methodological shift to the attitude that probability must be used to measure and reason about reality, not to characterize its essence. Krüger's statement in volume 2 that "quantum physics has become one of the cornerstones of our present-day probabilism" is contradicted by most of the rest of the book.

A physicist might want to read these two volumes backwards. Start with the last section of volume 2, where, following Krüger's concise survey of the probabilistic revolution in physics, von Plato and Cartwright throw new light on familiar subjects: Albert Einstein's views on probability, the history of ergodic theory, Max Born's interpretation of the wavefunction, and the philosophical noncommitments of American quantum physicists. Then turn to the end of volume 1 for Wise's "How Do Sums Count?" an intriguing discussion of the connections among statistical physics, psychology and social theory. Brace yourself for some heavy but valuable analysis of the background of James Clerk Maxwell's philosophy

in Krüger's "The Slow Rise of Probabilism." Read or re-read the introductory essays by Kuhn, Cohen and Hacking on how it all fits together, and then decide whether you want to dip into the more specialized essays on the social and biological sciences that make up the bulk of the work.

As a contribution to intellectual history and a provocation to rethink many taken-for-granted assumptions, The Probabilistic Revolution is superb, and it will (with high probability) remain the authoritative source on the subject for many years. All the more unfortunate, then, that physics is given so little importance. Perhaps it is true, as Gigerenzer argues, that psychologists used probabilistic thinking to advance the role of determinism and objectivity, explicitly refusing to follow the lead of physics. Perhaps it is historically correct that physics and evolutionary biology are unrepresentative of the sciences in their use of probability as a theoretical tool, as Beatty and others assert in their introduction to volume 2. Even so, I would have thought the notoriety of Heisenberg's principle in modern culture would earn it a more prominent place in such an account. One can only conclude that the human compulsion to impose regularity on the world continues to suppress the evidence for fundamental chaos.

> Stephen G. Brush University of Maryland, College Park

A Scientist at the Seashore

James Trefil Scribner's, New York, 1984. 208 pp. \$16.95 hc ISBN 0-684-18235-1

Meditations at 10,000 Feet: A Scientist in the Mountains

James Trefil Scribner's, New York, 1986. 236 pp. \$16.95 hc ISBN 0-684-18627-6

Meditations at Sunset: A Scientist Looks at the Sky

James Trefil Scribner's, New York, 1987. 208 pp. \$16.95 hc ISBN 0-684-18787-6

"If your goal is to understand the universe, a hike through the mountains is as good a place to start as a day at a synchrotron." This is the animating theme of James Trefil's "Natural Philosopher" trilogy, and