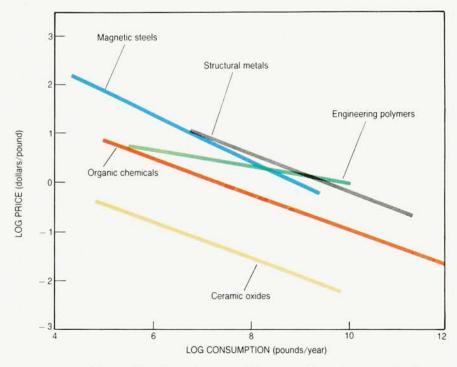
THE COMMERCIAL POTENTIAL OF HIGH-T_c SUPERCONDUCTORS

John J. Gilman

Commercial success does not necessarily follow from technical success. Successful commercial application requires that the economic utility provided by an advance exceed the total cost of production. Furthermore, the excess utility must be substantial. Otherwise, the rate of introduction of the advance will be too slow. Thus the commercial significance of the new superconductors depends on quantitative factors that enthusiasm alone cannot overcome.


Although it is far too early to be concerned about manufacturing costs in detail, it is not too early to be guided by estimates of cost in planning R&D directions.

There are two general classes of applications for these materials: first, as integrated parts of devices—small-scale items such as computer elements and sensors—and second, as differentiated components of subsystems—large-scale magnets, levitators and so forth. My discussion here refers mainly to the latter applications, where materials costs are more critical.

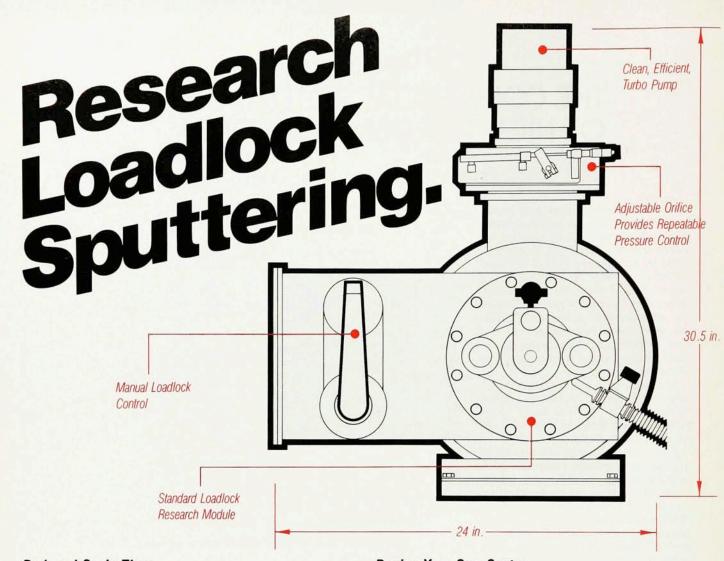
Markets for differentiated materials are sensitive to prices. Demand charts (which plot price vs volume) describe this sensitivity.\(^1\) The data points on such charts often have high correlation coefficients (up to 0.98), and so it is perilous to ignore them. A summary chart for a variety of materials is shown in the figure at right. The data are for raw or semi-finished materials, not for materials integrated into devices.

The lines on the chart are regression lines. They are exclusionary: To the right and above one of these lines no market exists for the given type of material. This means that consumption is associated only with points below and to the left of the line. Commercial significance is determined by annual revenues, that is, by

John J. Gilman is a senior scientist at Lawrence Berkeley Laboratory in Berkeley, California.

Demand lines show the trade-off between price and consumption for various groups of differentiated materials; above and to the right of the line no market exists for a material.

the product of price and consumption at a given point. Revenues in turn determine how much can rationally be spent on research, prototype development and manufacturing development to supply the market. This reasoning assumes, of course, that subsidies do not create an artificial market.


One can estimate the potential price of differentiated superconducting materials in two ways. Raw materials costs dominate in the first estimate, and fabrication costs dominate in the second. For both, only the lower limit is of interest.

The new superconductors are oxides. Their prices are determined mainly by three factors: concentrations in the ores from which the cations are extracted, purity and particle size. In the YBa₂Cu₃O_{7-y} superconductors the most expensive cation is yttrium, but it is the smallest

fraction and its contribution to the total retail cost is not very different from that of the barium cation. Both cations are only about twice as costly as the copper. Catalog prices yield total costs for medium-purity oxides of about \$100 per pound and for high-purity oxides of about \$500 per pound. High incentive might reduce these costs, perhaps by a factor of two or three.

Purity is a critical factor. For example, consider the costs of aluminum oxide for various commercially available levels of purity. (See the table on page 87.) These costs vary by a factor of 5000 depending on the purity.

For a given purity, small particles are much more expensive than larger ones. This fabrication cost is highly sensitive to processing method, but to keep the discussion focused on the lower limit of cost I shall not further

Reduced Cycle Time.

Sputtered Films, Inc. Introduces The Loadlock, Research Sputtering Module. The compact system's manual loadlock creates minimal disturbance to the main vacuum chamber during wafer loading. This loadlock contamination barrier concept provides the researcher with the highest probability of obtaining repeatable sputtering results on substrates up to 4" in diameter.

Buy Only What You Need.

The compact turnkey system uses the finest components available to assure repeatability. The system features SFI's proven S-GUN, Balzers turbo pump, SFI Micrometer Adjustable Variable Orifice, G-P gauges, Unit Measurement flow controllers, MKS capacitance manometers, and MDX switching power supplies.

Design Your Own System.

Modular design allows researchers to configure the system according to their present and future needs.

The System Is Preconfigured For:

RF Etch, RF and DC Bias, additional sputtering gases, water cooling and substrate holder — Just add cables and power supplies.

We've been interfacing with researchers for more than 20 years and together we're breaking new ground every day in sputtering technologies.

Sputtered Films, Inc.

314 Edison Ave . Santa Barbara, CA 93103 (805) 963-9651 Telex 182689

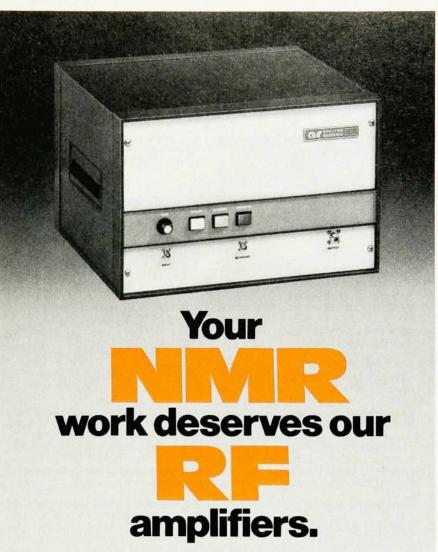
Circle number 47 on Reader Service Card

OPINION

Prices of some differentiated forms of aluminum oxide

Form	Price
Powders	(dollars/pound)
Bouxite (65% Al ₂ O ₃)	0.11
Calcined Bayer process	0.25
Reagent grade	4.20
Medium purity (99.9%)	22.00
High purity (99.999%)	494.00
Sintered parts (medium purity)	
Electronic substrates (10 mil)	120.00
Electronic substrates (60 mil)	30.00

consider the effects of processing.


To estimate a floor for fabrication costs, consider technical-ceramic items that are mass-produced. Such items are used as substrates in microelectronics. The common ones, made from aluminum oxide, cost from \$30 to \$120 per pound (see the table). From the above data an optimistic price level for ceramic superconducting materials is \$30 per pound, whereas a pessimistic, but quite possible, price might be \$300 per pound. From the figure, which is a distillation of long experience, the corresponding rates of consumption are 630 000 pounds a year (at \$30 a pound) and 5600 pounds a year (at \$300 a pound). These rates convert into annual revenues of about \$20 million and \$200 000, respectively. Such potential revenues do not justify research programs of more than a few million dollars a year for differentiated ceramic superconductors.

Even if one abandons caution and expects to make these materials for \$10 per pound, the corresponding revenues one can rationally expect are only about \$90 million per year. This expectation might justify an R&D program of about \$10 million per year, with a very high risk.

The case for integrated materials is quite different. For them, the materials costs are a small fraction of the value of the device. The research style, however, should also be quite different. Simply stated, the materials research and the device research cannot be independent. By materials research I mean the physics, chemistry, microstructure, geometry and fabricational aspects of the device. Working with specific devices rather than generic specimens is undoubtedly difficult. For the new superconductors, however, there is evidence that integrated materials and device research will be necessary for an effective R&D program.

Reference

1. J. J. Gilman, Res. Management 30(4), 32 (1987).

Conservatively-rated power amplifiers, with the noiseblanking capability that pulsed NMR demands, have been a specialty of ours for well over a decade. Whether your needs for clean if power are at the 200- to 500-watt level (as supplied by our Model 200L shown here) or up in the kilowatt range, we have the pulse power systems to ensure your peace of mind.

During pulse operation (at duty cycles up to 25%), the 200L can deliver up to 500 watts over a bandwidth of 1-200 MHz; yet when blanked with a +5V signal it reduces noise 30 dB in less than 5 microseconds. We know how important that noise-free environment is to the integrity

of your results.

If you're upgrading an existing system or moving into high-power spectrometry for solid-material experiments, we suggest you work for a few moments with an AR amplifier. Enjoy the instant frequency response without need for tuning or bandswitching; the total immunity to any degree or phase of load mismatch; the assurance that nowhere within the bandwidth will the output power be less than the rated minimum. (When we say minimum, we mean minimum.)

Call us to discuss your present and expected applications. Or write for our NMR Application Note 0013 and the informative booklet "Your guide to broadband power amplifiers."

160 School House Road, Souderton, PA 18964-9990 USA Phone 215-723-8181 • TWX 510-661-6094

7816