
DISORDERED
ELECTRONIC SYSTEMS

Quantum mechanical coherence of electron wavefunctions
in materials with imperfections has led to
major revisions in the theory of electrical conductivity
and to novel phenomena in submicron devices.

Boris L Al'rshuler and Patrick A. Lee

The electrical conductivity of an ordinary metal such as
gold is usually thought to be well understood. The
electrons form a Fermi sea made up of plane waves
modulated by the periodic crystal lattice. Because elec-
trons obey Fermi statistics, only a narrow band of them,
with an energy within kB T of the Fermi energy, contrib-
utes to the conductivity. At room temperature these
electrons are scattered by lattice vibrations, resulting in a
loss of momentum and a nonzero resistivity p( T). At low
temperatures electron-electron scattering is the domi-
nant scattering mechanism. In the limiting case of zero
temperature there is a residual resistivity p0 caused by the
scattering of the electrons at the Fermi energy by lattice
imperfections such as impurities and vacancies. The
static defects that disrupt the translational symmetry of
the crystalline lattice are the source of the disorder
considered in this article.

The resistivity is conventionally described by the
equation

The exponent n is 2 for electron-electron scattering and
ranges from 3 to 5 for electron-phonon scattering. The
constant A is positive. The above picture is based on a
free-electron model—that is, a model in which the states at
the Fermi energy are assumed to be describable by the
wavefunction for a single particle in an external potential.
Indeed, it has generally been believed that Coulomb
interactions between the electrons do not qualitatively
modify the picture. The basis of this belief is Lev Landau's
1956 theory of Fermi liquids. That theory shows that
Fermi statistics and phase-space restrictions give rise to a
one-to-one correspondence between the low-energy excita-
tions of an interacting Fermi system and those of the
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noninteracting system. The excitations of the interacting
system can thereby be described by single-particle wave-
functions. Even though Landau's theory was derived only
for translationally invariant systems, its applicability to
disordered systems was largely unquestioned.

It is only within the past ten years that we have
learned that almost everything in the above description
about the resistivity of metals is wrong in the limit of low
temperature. Interactions between electrons in disor-
dered systems do lead to important corrections of the
Fermi-liquid theory: The exponent n in the above
equation is V2 instead of 2, and the coefficient A can be of
either sign, depending on details of the interaction.1 Even
more surprising is the discovery that in two-dimensional
systems such as thin films, the residual resistivity p0 in
fact tends to infinity, albeit in a logarithmic way with
decreasing temperature.12 For ordinary metals these
effects become observable only at extremely low tempera-
tures.

As the amount of disorder is increased, however, these
considerations dominate the physics. For example, if
germanium is added to gold, the residual resistivity p0
increases until it overwhelms the contribution of phonon
scattering even at room temperature. For such a material
the corrections discussed above, which are small for
ordinary metals, become the dominant feature of the
resistivity p(T). When the germanium concentration
reaches 82% (so that the compound is more correctly
described as the alloy Gex Au, _ v with x = 0.82), the zero-
temperature conductivity vanishes. For even larger x, the
resistivity becomes greater with decreasing temperature
and the alloy becomes an insulator. This phenomenon,
known as the metal-insulator transition, has been under
intensive study since the 1950s.2 Because the transition
occurs at zero temperature as a function of a parameter de-
scribing the amount of disorder—in this case x—the
problem hinges on understanding the quantum mechani-
cal ground state of the disordered electronic system. In
the past few years a scaling theory of the metal-insulator
transition has been developed in analogy with the scaling
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Quantum-well wire, 75 nm in diameter
Above: Electron micrograph showing gold

wires 25 microns in diameter bonded to
contacts in a 0.8x0.5-mm field. The

contacts converge into a 20x40-micron
field. Right: Tips of the contacts connect

to a submicron frame, which converges to
a final 2 X 1 2-micron field in which the

75-nm quantum-well wire and its ten
transverse voltage probes are defined. The
quantum-well wire carries current along its

length by only a few one-dimensional
sub-bands at liquid helium temperature,
and typically contains only a thousand

electrons. (Photographs courtesy of
Michael Roukes and Axel Scherer, Bell
Communications Research.) Figure 1

theory of second-order phase transitions at critical tem-
peratures.

Localization of electrons
As a first step toward understanding the metal-insulator
transition, we can take Landau's Fermi-liquid theory
seriously and consider a model of noninteracting electrons
scattered by the random potential due to the disorder.
This is known as the Anderson localization problem. If the
disorder is weak, then on a short length scale the
wavefunction will look like a plane wave, but on a long
length scale it will be scattered by the random potential.
The distance over which the phase of the wavefunction
deviates from that of the plane wave is called the mean
free path. The multiply scattered wave is expected to have
an amplitude everywhere in the sample, just as a plane
wave does, and is referred to as an extended state.

Thirty years ago Philip W. Anderson pointed out that
if the disorder is made progressively stronger, we should
expect a qualitative change in the nature of the wavefunc-
tion.3 In the limit of very strong disorder, we can envision
the potential as a distribution of very deep potential wells,
and the wavefunction will take the form of bound states
that decay exponentially away from the binding sites.
States whose amplitudes decay exponentially away from a
center are called localized states. Physically one expects
states to become localized when the mean free path

becomes comparable to the wavelength. The central
question in the Anderson localization problem is precisely
how the localized states evolve from extended states as the
disorder is increased.

The Anderson localization problem produces a metal-
insulator transition because a system is a metal or an
insulator depending on whether the states with energy at
the Fermi level are extended or localized. However, this
transition is not the full story for a disordered electronic
system such as Ge., Au,_x. The interaction between the
electrons turns out to be enhanced in the presence of
disorder, and the corrections to the Fermi-liquid behavior
in good metals that we discussed earlier rapidly take over
the physics in the vicinity of the metal-insulator transi-
tion. We shall describe below some of the advances that
have taken place in the theories of Anderson localization
and interaction effects, and the way these two lines of
investigation have deepened our understanding of the
metal-insulator transition.

The findings about the onset of strong disorder have
forced us to modify the traditional description of conduc-
tivity. Remarkably, our conventional views are being
challenged from yet another direction. The rapidly
advancing technology of submicron devices has led to the
production of smaller and smaller structures. (One such
structure is shown in figure 1.) These devices, often called
mesoscopic systems, are large on the atomic scale, but
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Schematic energy spectrum of an
electron in a disordered solid. The
eigenstates have a width EQ and an
average spacing w. The width is larger
when the sample is open to the outside
world and the electron has the
possibility of escaping. The
dimensionless conductance #, given by
fc Iw, is less than 1 in a, where the
eigenstates are localized, and greater
than 1 in b, where the eigenstates are
extended. Figure 2

sufficiently small that the electron wavefunction is
coherent over the entire sample. The condition for
coherence is that the electron traverses the wire without
undergoing any inelastic collisions with phonons or other
electrons. For small wires such as those in figure 1 this
condition is satisfied at liquid-helium temperatures.
Because the electron can lose energy and equilibrate with
the heat bath only via inelastic collisions, we have had to
reexamine the conventional concept of energy dissipation
in a resistor.

The standard framework for the description of con-
ductivity has been the Kubo formula, which describes the
linear response to an electromagnetic potential. For
mesoscopic structures, where the resistivity is due entirely
to scattering by static random potentials, and where
inelastic collisions leading to dissipation occur mainly in
the voltage and current contact pads outside the "sample,"
there is an alternative picture that is often more
illuminating. In this formulation, by Rolf Landauer of
IBM, the electrons are assumed to be in thermal equilibri-
um with various chemical potentials in the leads.4 The
sample, with its static random potential, is regarded as a
scattering center for the electrons originating from the
current leads, and the conductance, defined as the current
divided by the voltage drop, is proportional to the
transmission coefficient of the scattering problem. The
proportionality constant, e2/h, is an important combina-
tion of fundamental constants that we shall return to
shortly. The Landauer formula was originally derived for
a strictly one-dimensional geometry, but has been ex-
tended by Markus Biittiker of IBM to the multiprobe,
multichannel case.5 In its extended form the formula
permits a satisfactory description of resistance even for
extreme situations such as the one presented by the
submicron wire shown in figure 1. The Landauer-
Biittiker formula relates a nonequilibrium property,
namely the conductance, to a scattering problem and thus
has great advantages in terms of conceptual understand-
ing and numerical computation. The Kubo formula, on
the other hand, is more convenient for analytic calcula-
tions. The two approaches, which correspond to partition-
ing the electron-chemical potential into purely electro-
magnetic or purely chemical potentials, respectively, are
equivalent and complement each other.

Studies of mesoscopic structures have revealed sam-
ple-specific changes in conductance, which are surprising-
ly sensitive to magnetic fields and even to the motion of a
few impurity atoms in the sample. Phenomena such as
these sensitivities are consequences of quantum mechani-
cal coherence, and the combined efforts of theorists,
experimenters and technologists in the past few years
have led to rapid progress understanding them. Even
though most of the theoretical results were discovered
through complicated calculations, much of the physics
underlying localization and interaction, as well as meso-

scopic physics, is simple and intuitive. We will focus below
on two important concepts: the idea of dimensional
conductance as a key variable, and the picture of electron
waves as random walking Feynman paths.

Dimensionless conductance
The problem that Anderson introduced and studied 30
years ago is deceptively simple: What is the nature of the
eigenstates of a single particle moving in a random
potential? The definition of a random potential is that at
any point in space the potential might take any of a range
of values, and only the probabilities for various values are
specified. Anderson pointed out that there should be a
qualitative change in the nature of the wavefunctions as
the distribution of the potential is made broader.3 (The
width of the distribution increases with increasing disor-
der and is a measure of the disorder.) When the potential
has a broad distribution, there is a significant probability
that there are deep potential wells in which an electron
might get trapped. Wavefunctions corresponding to these
trapped states decay exponentially away from the binding
sites. States whose amplitudes decay exponentially away
from a center are called localized states, while states such
as plane waves that have a nonzero amplitude everywhere
in the sample are called extended states.

Many of the important physical ideas of the modern
scaling theory of localization come from work in the early
1970s by David Thouless and his coworkers.6 In the
approach pioneered by Thouless, one considers hypercubes
of linear size L in a c?-dimensional space. Imagine that we
have somehow diagonalized exactly the Hamiltonian for a
single particle interacting with a random potential in this
hypercube and that the average spacing w between single-
particle energy levels is (N0Ld ) ~ \ where No is the number
of energy levels per unit volume and per unit energy. Now
imagine increasing—that is, scaling up—the sample size
to 2L by putting together hypercubes of size L. The
eigenstates obtained for each hypercube separately will no
longer be exact eigenstates of the larger system. They will
therefore decay on a time scale rD given by L2/D, the time
it takes a particle to diffuse across a hypercube and escape;
D is the diffusion constant. We may use the uncertainty
principle to associate a width Ec given by fi/rD with each
eigenstate. If, as shown in figure 2a, the width associated
with an "eigenstate" is much smaller than the separation
between energy levels, the eigenstates in adjoining hyper-
cubes will not mix appreciably. In other words, eigen-
states of the combined system in this energy range will be
confined mostly to one of the subsystems and will be well
approximated by a superposition of the eigenstates of the
subsystems. As we iterate this argument for hypercubes
of increasing linear size, by building them from smaller
hypercubes, we find that eigenstates of energies for which
the condition w^Ec is satisfied are increasingly confined
to small regions of the large hypercube—that is, they are
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localized. On the other hand, we can see that if w4Ec, as
shown in figure 2b, the eigenstates corresponding to a
hypercube become strongly admixed with those of other
hypercubes, so that the eigenstates of the combined system
will have large amplitudes in each of the subsystems. The
wavefunction is therefore extended.

Through this kind of reasoning, Thouless argued that
the nature of the wavefunctions in Anderson localization
depends on the ratio EQ Iw as the length scale is increased.
It turns out that this ratio is related to the conductance G
of the sample by

G = (e2/h)(EJw)
Note that unlike the conductivity a, the conductance,
which is defined as the ratio of the current to the voltage
drop across the sample, is a property of the finite sample
and not an intrinsic property of the material. The
prefactor e2/h has the dimension of conductance—it is
about 4x 10~5 fl^1—and is now even more famous as the
unit by which the Hall conductance is quantized in the
quantum Hall effect. We are thus led to define a
dimensionless conductance g as G/(e'2/h). The significance
of g is that it is a scale-dependent parameter whose
behavior at increasing length scales determines whether
the eigenstates at the Fermi energy are localized or
extended. This simple observation has a number of
profound consequences, as we shall next discuss.

Thouless reasoned that because the conductance of a
metallic wire is inversely proportional to its length, the
dimensionless conductance of a sufficiently long wire
should become small enough for the electron states to
become localized.7 Thus one reaches the remarkable
conclusion that a sufficiently long metallic wire will not
conduct electricity! This picture, however, is limited to
zero temperature in that it is predicated upon the electron
wavefunction's maintaining phase coherence across the
length of the wire. Phase coherence is destroyed only by
inelastic scattering, not by the elastic scattering caused by
the static disorder, so the effect of finite temperature is
described by introducing a phase relaxation time r^, which
is the time between successive inelastic processes. Be-
cause the electron motion in a disordered solid is diffusive,
the average distance over which the electron diffuses
during the time r^ and over which the phase coherence is
maintained is given by the length

A necessary condition, then, for the localization of
electron states in the wire is LSL^. The inelastic
scattering rate in general vanishes at zero temperature, so
the length L^ can become very long at low temperatures.
Typically it can be as large as several microns below 1 K.
Thouless estimated Tt for electron-phonon scattering and,
based on his estimate, proposed that the resistivity of a
wire would rise sharply below a certain temperature. This
remarkable proposal led a number of groups to fabricate
small wires and thin films and study their conductivity at
low temperatures. These attempts resulted in the discov-
ery by Gerald Dolan and Douglas Osheroff of a log T
increase in the resistance of Pd-Au films, which was the
beginning of a series of unexpected discoveries in the
physics of micron-sized devices.8

A second important consequence of the concept of
dimensionless conductance is that it led to the scaling
theory of localization and the discovery of weak localiza-
tion effects. The early steps were taken by Franz Wegner,
who formulated a scaling theory in analogy with critical
phenomena in which the dimensionless conductance plays
the role of the scaling variable.9 If the metal-insulator
transition is like a critical point, it follows naturally that
the conductivity should vanish continuously as the impu-
rity concentration approaches the critical concentration
nc. This is because there must be a diverging length
|"~|rc — nc| ~v near the critical point, and just from
dimensional argument, we expect the conductivity a to be
a~(e2/h)g/£;. Provided g scales to a fixed point g* at
criticality, we will have

(2)

where// = v. Equation 2 is at variance with the prevailing
view at the time, that the conductivity should jump
discontinuously at the metal-insulator transition, and the
size of the jump was referred to as the minimum metallic
conductivity amtn. That prevailing view was based largely
on analysis of experiments done at relatively high
temperatures (above 1 K). A number of experiments done
in the last ten years at temperatures as low as the
millikelvin range support equation 2 instead.2

In a famous paper by Elihu Abrahams, Anderson,
Donald Licciardello and T. V. Ramakrishnan,10 a one-
parameter scaling theory of localization was formulated

A
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Typical Feynman path executing
a random walk through a solid.
In Feynman's formulation of
quantum mechanics, the
amplitude for the propagation of
a particle between two points is
given by the sum of the classical
amplitudes over all the paths
connecting the two points. Here
the Feynman paths consist of
randomly bent tubes of width
A/2TT whose straight sections
connect pairs of strong impurity
scatterers (circles). The mean
free path ( is the typical step
size. Figure 3
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and explained in a lucid manner by postulating that the di-
mensionless conductance g is the only scaling variable. In
support of this view, a diagrammatic perturbation theory
was done that produces in two dimensions a logarithmical-
ly divergent correction to the conductivity, even in good
metals, that is, when the disorder is relatively weak. This
discovery led to a series of remarkable phenomena, which
go under the name of "weak localization." We would like
to give a qualitative explanation of the origin of these
phenomena, which brings us to the second of the two basic
concepts that we would like to introduce: the picture of the
electron wave as random walking Feynman paths.

Random walk of Feynman paths
In Richard Feynman's formulation of quantum mechan-
ics, the amplitude for the propagation of a particle
between two points is given by the sum of classical
amplitudes over all the paths connecting the two points.
This differs from classical mechanics, in which one need
consider the most probable path only. For a free particle,
the dominant paths lie within a straight tube connecting
the end points whose radius is on the order of the de
Broglie wavelength X. Let us imagine that the impurity
atoms are distributed randomly in space, and let their
concentration be nlmp. For simplicity, let us consider the
unitarity limit, in which the scattering cross section is of
order X2. In that case the Feynman paths consist of
randomly bent tubes whose straight sections connect pairs
of scatterers (see figure 3). The average length of a
straight section is the mean free path /, which can be
estimated by comparing the volume of the tube, \2l, with
the average volume per impurity, nimp~'1. Thus Z~' is
approximately equal to rc,mp ~'A.2, in agreement with the
result obtained with Boltzmann transport theory. It is
also convenient to introduce the elastic scattering time r
corresponding to the time it takes the electron to travel
the distance I.

Now consider the propagation of an electron from
point A to point B. Waves taking different paths, because
of their different lengths, will arrive at B with random
phases, so the probability of finding the particle at B is
well approximated by the sum of probabilities of the
various paths. In other words, the interference terms
average to zero, and the addition of probabilities leads to
the Boltzmann description, or classical diffusion. This is
no longer true, however, when we look at closed loops, that
is, when we consider the probability of returning to the
starting point. Then, two paths of the same length (see
figure 4) will interfere constructively. Their contribution
in a quantum theory is therefore twice the value in
classical diffusion. The enhanced probability of return
decreases the diffusion constant and diminishes the
conductivity. One can estimate the enhancement of
backscattering by asking what fraction of the paths will
return to the starting point within the time T^ , after which
coherence is lost by inelastic processes. That estimate

leads to the result that in three dimensions the relative de-
crease in the conductivity is given by

(3)

The correction is dominated by short trajectories and is
finite in the limit rt — oo, but it is small when / is large,
that is, when the amount of disorder is small. For a thin
film whose thickness a is much less than r^, by contrast,
trajectories of all lengths contribute equally, and the
correction diverges in the limit T$ ~* oo even when the
disorder is weak. The correction for the conductivity per
square of the film, defined as a2 = aa, is

= (e2/irh)\n(Ld,/a) (4)

Here we have supplied the numerical coefficient from a
diagrammatic calculation. This coefficient is a universal
number, independent of the amount of disorder. For
inelastic scattering, r^ " ' typically is proportional to Tp,
where the power p depends on which scattering—elec-
tron-phonon or electron-electron—is dominant in a given
temperature range. Thus a In T correction is predicted for
the conductivity of thin films. The logarithmic divergence
is another manifestation of the scaling-theory result that 2
is the marginal dimension in localization.

Thus we see that weak localization results from the
interference between a closed Feynman path and its time
reversed path, which we shall refer to as the conjugate
path. This nomenclature is useful because it brings up the
optical analog of the weak localization phenomenon.
Consider a laser beam incident on a strongly scattering
medium, such as a random collection of dielectric spheres.
In figure 5a we illustrate the multiple scattering of the
incident beam by three such scattering centers. To
calculate the intensity of the backscattered light we have
to add the amplitude from the conjugate wave shown in
figure 5b. These two waves will be in phase because they
have equal path lengths and the backscattering intensity
is doubled. In contrast, away from the backscattering
direction by an angle 6, as shown in figure 5c, the path dif-
ference between the wave and its conjugate is given by
d(sin(6 + <f>) — sin </>) where d is the distance between the
first and last scattering centers. The interference be-
comes unimportant when this is comparable to the
wavelength X. Thus we expect a doubling of the back-
scattering intensity in a cone with angle 6 ~d/A~l/A,
since typically d is on the order of the mean free path /. It
turns out that this phenomenon of coherent backscatter-
ing was discussed theoretically as early as 1969, but the
quantitative observation was made only recently.11 The
results from one of the groups is shown in figure 6. The
physical picture shown in figure 5 can be considered the
reformulation of the returning Feynman path picture in
momentum space, and has been explained and exploited

Propagation of an electron from one
point to another in a solid, a: Two

typical Feynman paths describing the
propagation from A to B. b: Solid and

dashed curves represent a Feynman
path and its time-reversed path, which
interfere constructively, enhancing the

probability of return to the origin. This
decreases the diffusion constant and the

conductivity. Figure 4
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Backscattering of light, a: Wave of light interacting with three scattering centers in such a way that the
incoming and outgoing waves are parallel, b: Time-reversed, or conjugate, wave, which interferes with that
shown in a. c: Scattering in a direction 6 away from 1 80° backscattering. Small values of 6 correspond to the
region of enhancement. There is a phase shift between the path and its conjugate. Figure 5

experimentally by Bergmann in designing beautiful trans-
port measurements in thin films.12

The most dramatic of the weak-localization effects in
electronic systems occurs when a magnetic field is applied,
in which case theory predicts a negative magnetoresist-
ance. In standard transport theory, a magnetic field
perpendicular to the current tends to cause the carriers to
drift in a direction transverse to both the current and the
field, thus increasing the resistivity. Weak-localization
theory, by contrast, predicts a decrease in the resistivity
when a magnetic field is turned on, and at low tempera-
tures the effect is predicted to occur in fields as small as a
few tens of gauss.2 In the presence of a magnetic field
perpendicular to a metallic film, each Feynman path picks
up an additional phase factor jA-cfl, where the line
integral is along the trajectory. Hence in figure 4, the
path and its conjugate will pick up opposite phases in a
magnetic field. When the paths return to the starting
point, their phases will be different by 2j> A • d\—that is, by
twice the flux enclosed by the loop the closed path forms—
and the constructive interference leading to the weak-
localization effect will be destroyed. Therefore the resis-
tivity will decrease when the phase difference becomes of
order IT. The typical area of a loop is L^ 2, so that this condi-
tion can be described as HL^ 2 ~ <̂ 0, where <j>() = hc/e is the
flux quantum. Because at low temperatures L^, is much
larger than the mean free path /, the field scale 77 becomes
very small, on the order of tens of gauss as mentioned
earlier. The negative magnetoresistance was first ob-
served in the inversion layer of a silicon MOSFET and has
since been seen in thin metallic films as well.212

An even more dramatic manifestation of the same
physics is the prediction of oscillations in the magnetore-
sistivity of a sample shaped like a hollow cylinder.13

Provided the walls of the cylinder are sufficiently thin and
its perimeter is less than or on the order of L^, the phase
difference between each Feynman loop that encloses the
cylinder and its conjugate path will be the same and equal
to 2ij>/(t>0, where <t> is the total flux through the cylinder.
Thus the conductivity along the cylinder is predicted to
oscillate with increasing magnetic field, and the period of
the oscillation is </>n/2, which is the flux quantum
corresponding to a charge 2e. This effect was first
observed at the Institute for Physical Problems in Moscow
by the father-and-son team of D. Yu. Sharvin and Yu. V.
Sharvin.14

Interaction effects
The Coulomb interaction between electrons in metals is
generally not weak: The potential and kinetic energies of
electrons in metals are of the same order of magnitude.
On the other hand, most properties of metals can be
described quite well by treating the electrons as a
noninteracting gas of fermions. This is so because
according to Landau's Fermi-liquid theory, one can
describe strongly interacting Fermi systems—that is,
Fermi liquids—in terms of excitations called quasiparti-
cles, which interact only weakly even in a strongly
interacting electron system. Quasiparticles are well
defined if their decay width y is small compared with their
energy e measured with respect to the Fermi level.
Because of the Pauli exclusion principle for fermions, the
phase space for the decay of quasiparticles into particle-
hole pairs is limited and the decay width y is proportional
to e2. As a result, low-energy quasiparticles are well
defined. The quadratic dependence of the scattering rate
on energy leads to a T2 correction to the resistivity caused
by electron-electror. collisions. Fermi-liquid theory
makes allowance for a strong renormalization of the
density of states of the quasiparticle excitations but
nevertheless leaves the density of states as a smooth
function of energy, just as in the noninteracting fermions.

Fermi-liquid theory is valid only for translationally
invariant systems, in which momentum is a good quantum
number for both the energy eigenstates and the quasipar-
ticle states. The simplification the Fermi-liquid theory
offers is therefore lost in disordered systems, which by
definition are not translationally invariant. Until recent-
ly, however, the common belief was that the Fermi-liquid
picture ought to hold as long as the disorder is relatively
weak. Al'tshuler and Arkadij G. Aronov have shown that
this is not the case.1 They found that in three dimensions
the electron-electron scattering rate varies as e3'2 and the
correction to conductivity varies as TU2 at low tempera-
tures. Furthermore, the density of single-particle states
has a singularity of the form | e \l /2 at the Fermi energy. In
two dimensions the modifications are even more serious.
For example, the corrections to the conductivity go as In T,
with a coefficient again of order e'2/h, that is, of the same
order as the weak-localization correction given in equation
4. As mentioned earlier, the In T correction in thin films
was the earliest sign of anomalous transport properties in
disordered metals.8
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Physically these corrections come about because
wavefunctions in disordered media are composed not of
plane waves but of waves multiply scattered from the
random potential. Eigenstates of different energies expe-
rience the same random potential, and so they are
correlated in space. The spatial correlation enhances the
amplitude of scattering of two electrons of similar energy.
In fact the amplitude becomes singular as the difference
between the energies of the two electrons goes to zero. To
estimate the enhancement, consider two electrons whose
energies differ by e. Because of the uncertainty principle
the two electron states are almost indistinguishable over a
time scale shorter than -fi e. During this time their
interaction amplitudes add. In the presence of disorder
the particles move diffusively and may encounter each
other again within the time ft1e. Thus it is reasonable to
consider the coupling constant to be enhanced by the
fraction of the Feynman paths that bring a particle back to
the origin within f\ e. The enhancement factor is given by
considerations leading to equations 3 and 4 but with -.
replaced by ft e. As mentioned earlier, the corrections are
singular in e , but they vanish in the limit of zero disorder.
where the mean free path for elastic scattering becomes
infinite.

Some very puzzling data in the literature on metallic
glasses are found to fit very well a \ T-law. which we noted
above arises also in a theory of interaction and localization
effects.2 That theory's prediction for the density of
states—a square-root singularity at the Fermi energy—
has also been confirmed experimentally. This agreement
between theory and experiment on the density of states
resolves the longstanding problem of the "zero-bias
anomaly" in the tunneling spectra of disordered metals.

Merol-insuloTor transition
Localization theory predicts that the diffusion constant,
and therefore the conductivity, vanishes at the metal-
insulator transition but that other physical quantities.
such as the single-particle density of states, should stay
finite and analytic. Tunneling experiments, which mea-
sure the density of single-particle states, show, however,
that the density of states at the Fermi energy, as well as
the conductivity, vanishes at the metal-insulator transi-
tion2 -lD isee figure "i. Clearly something besides localiza-
tion, such as the interaction between electrons, must be
taken into account.

We do not yet have a complete theory of the metal-in-
sulator transition, but it has been possible in the past few
years to develop a theory that takes account of both
localization and interaction effects.1" The new theory has
another two important scaling variables in addition to the
dimensionless conductance of the scaling theory of local-
ization. These variables describe the amplitudes for
singlet and triplet scattering. As in the theory of more
usual types of phase transitions, the behavior at the
metal-insulator transition can also be put into several
universality classes, each associated with a different set of
critical exponents. The behavior of the scaling variables—
that is, whether the variables scale to zero, a constant or
infinity—depends on the universality classes, and the
physical realization of each universality class in turn
depends on the strength of spin-flip scattering, spin-orbit
scattering and magnetic fields.

Experiments on alloy films such as Au,_tGet and
\b j_ jS i , indicate that the conductivity exponent fi
defined in equation 2 has a value close to unity (see figure
7). By contrast, the exponent is close to 0.5 in uncompen-
sated silicon doped with phosphorus. Very recent experi-
ments have shown that the value of the exponent varies
between 0.5 and 1 as the compensation is introduced. It is

natural to explain these different critical exponents as
describing different universality classes—for instance,
spin-flip scattering may be important in alloy films but for
some reason not so important in uncompensated doped
semiconductors. However, much more work remains to be
done before we can regard the problem of the metal-
insulator transition as solved. Among the important
unresolved issues are the following:
> The present theory is consistent with a physical picture
in which the transport of charge, of spin and of heat all in-
volve the same quasiparticle carrier. Thus some remnant
of the quasiparticle picture of the Fermi liquid theory
remains, but with quasiparticles that are diffusive instead
of plane-wave-like.1 • One consequence of this picture is
that the Wiedennann-Franz law, which predicts that the
ratio of thermal to electrical conductivity is (rriZXki'e'rT,
should hold on the metallic side all the way up to the
metal-insulator transition. This prediction and. more
generally, the existence of quasiparticles remain to be
tested.
> The existence of local magnetic moments on the
metallic side of the metal-insulator transition is a
longstanding problem that the current theory does not
really address. Formation of the local moments may
involve states very far in energy from the Fermi energy.
Such states are outside the scope of the scaling theory,
which considers states near the Fermi level only. Nuclear
magnetic resonance experiments and very recent simulta-
neous measurements of magnetic susceptibility and specif-
ic heat down to very low temperatures in phosphorus-
doped silicon provide strong evidence for local moments on
the metallic side of the transition.1' These local moments
might control the amount of spin-flip scattering, which in
turn determines the universality class to which a system
belongs.

Mesoscopic systems
Recent developments in lithographic technique have made
it possible to fabricate systems in the submicron range.
Because at millikelvin temperatures L. is on the order of a
micron or more, it is possible at those temperatures to
study samples whose dimensions are smaller than or
comparable to L.. The quantum mechanical coherence of
the electron waves dominates the physics under these
circumstances. This opens up a new field of physics,
broadly referred to as mesoscopic systems, that deals with
structures large on the atomic scale but small enough that
quantum mechanical coherence is important and macro-
scopic averaging of the type familiar in statistical physics
does not describe the behavior of a sample. These systems
are characterized by sample-specific and reproducible
fluctuations. The property that has been studied in
greatest detail is fluctuations in the conductivity of small
structures as a function of magnetic field, chemical
potential and other parameters. Richard Webb and Sean
Washburn, in their article on page 46, describe experimen-
tal work and recent developments in mesoscopic systems,
and Yoseph Imry has written an excellent review of the
theoretical concepts.19

The origin of the fluctuations can be understood by
starting from Landauer's formula, which relates the
conductance to the transmission probability.4 The proba-
bility amplitude that an electron is transmitted from one
side of the sample to the other is proportional to the sum of
amplitudes of Feynman paths that walk randomly across
the sample. In the presence of a magnetic field, each
Feynman path will acquire a phase (A-d\, and the
interference between two typical paths will be completely
altered if the flux enclosed by the two paths is of the order
<30. The area enclosed by the two paths is typically the
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same as the area of the sample. Therefore this picture
predicts that the conductivity will fluctuate when the
magnetic field is changed by Ai/, where the product of LH
and the area is of the order of the flux quantum <bn. This
prediction agrees with experimental as well as numerical
simulations.

This argument, however, does not give any informa-
tion about the size of the fluctuation, and one might expect
that the fluctuation will average to zero because there are
many Feynman paths, especially as the sample size
increases. It turns out that there is a remarkable
universality in the magnitude of the fluctuation, namely
that the conductance of the sample should fluctuate by
order e2lh, independently of sample size, dimensionality
and the amount of disorder, provided the disorder is weak
enough to be far from localization, and the temperature
sufficiently low.20 Many experiments have confirmed this
idea of universal conductance fluctuation and its exten-
sion to finite temperatures.

To put this result in context, we note that for finite
samples it is natural to expect sample-to-sample fluctu-
ations in any physical quantity, including the conduc-
tance, just because each sample contains a different
distribution of impurities. However, standard statistical
fluctuations obey the law of large numbers, so that in a-di-
mensional space the relative fluctuation is expected to
obey

<SG2>/<G>2~(LC/L)d (5)
Here Lc is a coherence length that one might naively
associate with a microscopic length such as the mean
distance between impurities. It turns out that because of
quantum coherence effects, Lc is the mesoscopic length
scale given by L^, so that equation 5 is obeyed only for
L>Lt. For LSLj,, and using the fact that from Ohm's law
(G)~Ld ~2, we see that the universal conductance fluctu-
ation <<5G2>, which is approximately equal to e2/h, implies
that <<5G2>/<G2>~L4"2d, so that for d < 4 the fluctuation is
much larger than that given by equation 5. In particular,
in two dimensions, even the relative fluctuation is
independent of size (until localization sets in), indicating
that the system does not self-average.

If we look at the conductance fluctuation from a
quantum mechanical point of view, we reach the opposite
conclusion, namely that the fluctuation is smaller than
naive expectations would dictate. According to equation

1, the dimensionless conductance is just the number N{EC)
of energy levels within an energy range Ec. If the energy
levels are randomly distributed, the fluctuation in the
number MEC) would be ME,. )'/2, much larger than unity,
the correct answer. This apparent discrepancy can also be
seen from figure 2b, where superposition of a number of
broadened but randomly located eigenvalues leads to large
fluctuations in the density of states. The resolution of this
discrepancy is that the distribution of eigenvalues of a
random Hamiltonian is not random, because eigenvalues
tend to repel each other. Freeman Dyson (Institute for
Advanced Study) studied this phenomenon of spectral
rigidity and showed that the rms fluctuation in ME) goes
as In M B , much less than ME)U2 according to random
statistics. Dyson obtained his result by counting the
number of states in a precise energy window of width E. In
our case the finite width of the levels makes it reasonable
to smear the edge of the window by a width of order Ec,
and it can be shown that in that case Dyson's result
becomes unity, in agreement with the universal conduc-
tance fluctuation result.21

The remarkable sensitivity of the conductance of a
sample to an external magnetic field raises the following
question: How sensitive is the conductance to a small
variation in the random potential? This question was
answered by Al'tshuler and Boris Z. Spivak22 and by
Shechao Feng, Lee and A. Douglas Stone,23 who concluded
that if a fraction SN/Nirnp of the total number of
impurities A îmn in a sample of size L are moved, the
conductance will change by

SG~
\ez/h,
\(e2/h)(L/l)(5N/N,n

if SN/N,mp>l2/L2

ifSN/Nmp<r2/L2

In particular, in two-dimensional films the motion of even
a single impurity atom leads to a 5G that is a fraction of
ez/h, no matter what the sample size L. This surprising re-
sult can also be understood from the picture of random
walking Feynman paths. From figure 3 we can see that
each Feynman path across the sample visits (L//)2

impurity sites, so that the fraction of sites visited is
{L/lf/Nirnp. It follows that a given site is visited by the
same fraction (L/lf/Nmp of all the Feynman paths. The
motion of an impurity changes the phases of all the
Feynman paths it visits. To change phases of all the
Feynman paths traversing the sample, we have to move
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Nimp (l/L)2 impurities, in agreement with equation 6.
The sensitivity of the conductance to the motion of a

single impurity opens up the possibility of using conduc-
tance to probe slow dynamic processes, such as the
diffusion of impurities or the dynamics of spin glasses or
two-level systems. Already, fluctuations on a time scale of
seconds to minutes have been observed in bismuth films
below 1 K and have been interpreted as the result of some
kind of atomic rearrangement in the film. Slow configura-
tion change is known to lead to 1//"noise in metals; the sug-
gestion had been made that in metallic glasses the two-
level system becomes the dominant source of configura-
tion change at low temperatures, so the increase in the IIf
noise with decreasing temperature was predicted.23 Re-
cent experiments on copper-carbon and bismuth films24

have apparently confirmed this prediction and have found
that the 1/f noise below 50 K is due to this kind of
fluctuation. Thus the quantum interference phenomenon
is not necessarily restricted to submicron samples in the
millikelvin temperature range.

What we have learned about the wave nature of
electrons in disordered media should enhance our under-
standing of the propagation of classical waves such as
electromagnetic or sound waves in these media. The
coming years should bring further new developments as
well as a deeper understanding of longstanding problems
such as the metal-insulator transition.
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