
THE STATISTICAL PHYSICS
OF SEDIMENTARY ROCK

The complexity of million-year-old sedimentary rock is
being unraveled by such modern concepts of random systems
as fractals, percolation and diffusion-limited growth.

Po-zen Wong

/ ascribe to nature neither beauty, deformity, order nor
confusion. It is only from the viewpoint of our imagination
that we say that things are beautiful or unsightly, orderly
or chaotic.

—Baruch Spinoza, 1665

Sedimentary rock makes up much of the Earth's surface
and contains two of the most vital fluids for our lives—
water and hydrocarbons. Yet physicists have paid little
attention to rock, mainly because we are discouraged by its
apparent complexity. We are well trained in working with
idealized models, but when faced with a piece of rock, not
only do we not know where to begin, but we also may ques-
tion whether it is even possible to find interesting physics
in such a "dirty" and uncontrolled system. With further
thought, however, we should realize that these are but the
usual mental barriers that we have to overcome every
time we study something new.

In the last few years, physicists who have ventured
into this unfamiliar territory have gained new insight into
sedimentary rock using concepts of statistical physics.'
The threat of an energy crisis and the once seemingly ever-
rising price of oil provided both the incentive and the
resources to take an unconventional look at rock, because
an understanding of the basic physics of rock promises to
improve the science and technology used in the oil
industry. In this article I describe a few problems related
to the structural and transport properties of rock and in
particular the flow patterns of oil and water (figure 1) that
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have caught my own fancy. They are by no means the only
interesting or important ones, but they serve to illustrate
how the modern theories of critical phenomena, percola-
tion, diffusion-limited aggregation and dendritic growth
are well suited for the study of rock.

Grains, pores and fractals
Perhaps the most obvious aspect of rocks that intrigues
the statistical physicist is their microstructure. Figure 2a
shows a scanning electron micrograph of a simple "clean"
sandstone. We can see that it is just a random packing of
sand grains of comparable sizes—grains of quartz typically
tens to hundreds of microns in diameter. Such grains are
sorted during sedimentation. After burial and compaction
with other mineral sediments, they are consolidated under
high pressure to form a rigid matrix with a multiply
connected network of pores that controls how ions and
molecules can move through the rock. Such ions and
molecules in turn alter the rock over millions of years—a
process called diagenesis. In figure 2b, which is a
magnification of the central part of figure 2a, we can see a
small amount of mineral that has grown on the grain
surface with a highly irregular shape. Most sandstones
are much "dirtier," containing much more of such
minerals, the most common of which are clays formed of
layered alumina silicate compounds.2 Figure 2c shows the
intricate morphology of illite clay grown in the pores of a
Coconino sandstone.

While a geologist would consider the sandstones in
figure 2 to be simple, a physicist would study them with
even simpler models. For example, we may use a dense
random packing of glass beads of a single diameter, such as
those shown in figure 3a, to mimic the grains in figure 2a.
The porosity, or pore volume fraction <f>, of such a packing
of beads is about 40%, comparable to that of unconsolidat-
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Viscous fingering patterns in a thin gap between two glass
plates, formed as a less viscous fluid displaces a more viscous
one at a high flow rate.15 a: The miscible liquids water and
glycerine interact in a Hele-Shaw cell. There is no surface
tension between the two fluids, and a diffusion-limited
aggregation structure with fine branches appears, b: A square
lattice of grooves etched into the glass plates imposes an
anisotropy, turning the random branching into regular
branching as in a snowflake. c, d: The same setup as in a and
b but with oil invading glycerine. The same patterns appear,
except the fingers are much wider because of surface tension
between the immiscible fluids. In a typical reservoir where
water or gas displaces oil, the same kinds of fingering
phenomena occur, leaving most of the oil in the ground.
(Photographs courtesy of J.-D. Chen, Mead
Imaging.) Figure 1

ed sand. We can sinter the beads to obtain the lower
porosities that occur in rocks, and we can vary the grain
size or make samples with mixtures of grain sizes. Such
"toy rocks" have become known as Ridgefield sandstones
and have many properties similar to those of real rocks.3

A perturbation on the packed-spheres model uses the
concept of the fractal4 to describe the random mineral
overgrowth seen in figures 2b and 2c. Figures 3b and 3c
show two simple examples. The object in figure 3b is
called a Koch island and is an example of a surface fractal.
One begins with an equilateral triangle of side length L
and then successively attaches smaller and smaller
triangles of sizes L/3, L/32 and so on to the middle of every
straight segment of the perimeter. After n iterations, the
perimeter consists of TV segments of length r, where r =
L/3" and

N=A(L/rf (1)
The exponent dr is called the fractal dimension, and A is a
constant of order unity. For the Koch island, A is 3 and d,
is Iog4/log3, or about 1.262. This mathematics can be
used to model the pores in a rock because ever-smaller
mineral particles can grow or deposit on particles already
present. When a pore of size L is observed with a
resolution r, the number of surface features will be given
by equation 1, and the measured surface area S by

S = Br\L/r)d' = BL\L/r)d (2)
Figure 3c is an example of a volume, or mass, fractal

called the Sierpinski gasket. Here, too, one begins with a
triangle of side L to represent a smooth pore, but one then
cuts out successively smaller triangles of sizes L/2, L/22

and so on to represent ever-smaller grains filling up the
pore volume and reducing the porosity. After n iterations,
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Sandstone as seen with an electron
microscope, a: A 2.5-mm-wide region of a
sample from Fontainebleau, France, b: A
0.05-mm-wide region of the same sample, c:
Illite clay in a Coconino sandstone, at about
the same magnification as in b. Figure 2

the pore space consists only of triangles of size r, given by
L/2", and the number of such triangles is given by
equation 1 with the constant A equal to 1 and the fractal
dimension dt equal to log 3/log 2, or about 1.585. Because
a pore of size r contributes a porosity of order (r/L):\ the to-
tal porosity is

= C(L/r) (3)

surface and volume fractals described above because they
have random surface and volume elements with a
continuous hierarchy of sizes between an upper limit L
and an lower limit r. Equations 1-3 are applicable as
representing statistical average behavior between these
limits. The fractal dimension d{ should always be between
2 and 3 for either the pore surface or the pore volume. At
least three types of experiments now support such a
fractal description for sandstone:
> The earliest work used an absorption technique to cover
the pore surface with a monolayer of molecules and
analyzed how the number of molecules TV varied with their
size r. David Avnir and his coworkers at the Hebrew
University of Jerusalem^ found that equation 1 describes
many rock and soil samples with fractal dimensions df
between 2 and 3. The length scales probed by this method
typically range from a few angstroms to tens of angstroms.
D> Arthur Thompson and his colleagues at Exxon Produc-
tion Research performed digital image analyses on micro-
graphs similar to those in figure 2 and studied the
distribution of feature sizes along straight lines across the
picture.6 A sharp peak in the intensity signals an edge,
and two neighboring edges define a feature size r. From
equation 1, one expects the size distribution 7V,(r) to be
proportional to r3(diV/dr), or r~ d', and Thompson and his
coworkers indeed observed this in sandstones with pore
sizes ranging from 0.1 microns up to the typical pore size of
a few tens of microns. In some rocks that are severely al-
tered by diagenesis, they found that the pore volume
distribution was consistent with equation 3, suggesting a
volume-fractal behavior.
> Small-angle scattering of thermal neutrons or x rays
has been used in recent years to study a wide variety of dis-
ordered systems such as polymer gels, aggregated colloids,
oil-water emulsions and cements.7 The reason is that
according to the Born approximation, the scattered
intensity, or cross section, as a function of the wavevector
transfer, I(q), is just the Fourier transform of the density-
density correlation that characterizes the structure. For a
surface fractal that obeys equation 2, one finds

For a volume fractal, however,

(4)

(5)

The pores in actual rocks behave differently from the
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The different powers of the wavevector q in equations 4
and 5 readily distinguish volume fractals from surface
fractals, because df^,3 and 6 — dr>3. Experiments on
many sandstones and shales have found behavior de-
scribed by equation 4. A log-log plot of the wavevector
transfer function I(q) (figure 4) shows slopes between — 3
and — 4, indicating fractal dimensions df between 2 and 3.
The length scale \lq probed by these experiments is under
about 500 A.

These studies indicate that fractal surface behavior
spans all length scales below the pore size. An important
open question concerns the unknown growth mechanisms



Geometrical models for sedimentary rocks.
a: Dense random packing of 0.2-mm-diameter

glass spheres models the packing of clean
sand grains in sandstone, b: Koch island with

a fractal perimeter models a pore with a
fractal or rough surface, c: Sierpinski gasket

models a set of tiny pores that link up to form
a fractal volume. Figure 3

responsible for the observed wide range of fractal dimen-
sions. There is only a clue at present. We know that clay
compounds tend to incorporate into their lattices many
impurity ions with the "wrong" valences, and that the
excess charge is balanced by counterions adsorbed onto the
surface. In addition, water molecules tend to be adsorbed
because of their dipolar nature. As a result of such
adsorption processes the system tends to maximize the
surface area, and one may consider the growth to be driven
by a negative surface tension. This mechanism is called
antisintering.8

Porosity and conductivity
Now that we have some simple ideas about pore geometry,
we can consider the movement of ions and molecules in the
random medium. One common hypothesis is that the
pores are always connected, even if they do not seem to be.
The reason is that the pores are altered by the fluids that
flow through them. As they become smaller, less fluid can
flow and less alteration can occur. This is much like
saying that a clogged kitchen sink is never perfectly
clogged, it just drains very very slowly! Fluid flow and
electrical conduction should exist even as the porosity 4>
tends to zero. In the theorist's jargon, we can say that
rocks have a zero percolation theshold.

The conductivity 07 of water-saturated rock is often
estimated by the empirical Archie's law9:

,• ~ A

<7r = <7W IF ~ <Z(7W < (6)
Here CTW is the conductivity of water and i^is the formation
factor, which characterizes the transport geometry. Fig-
ure 5 shows that data for 52 rocks and 12 Ridgefield
sandstones roughly follow this expression with a and m
equal to 0.8 and 2, respectively. There have been many at-
tempts to understand this behavior. Two simple models
have proved to be the most illuminating.

The first is the "shrinking tube" model,3 which
exploits the analogy with percolation theory.10 In ordi-
nary bond percolation, the conductive bonds in a network
are snipped off at random. The network becomes discon-
nected as the bond fraction p reaches a threshold pc. For
p^,pc, the conductivity approaches zero asymtotically as
(p—pc)'. The critical exponent t is about 1.9. This
expression is similar to Archie's law if we identify the bond
fraction p with the porosity 4> and assume that the
threshold pc is 0.

Operationally, the shrinking-tube model takes a
simple cubic network of tubes with a uniform radius r0
and reduces the radii randomly by a factor a rather than
cutting them off as in percolation. By keeping track of
how the porosity and conductivity vary, one finds that
Archie's law is obeyed exactly in this model, with
m = (In a2)/(a2 — 1) and 0 < a < 1. This result derives from
the fact that the porosity scales as the average conduc-
tance, which is proportional to <rf>, or <a "'>, and is
weighted heavily by the few large tubes, whereas the
conductivity for a fully connected network scales with its
most probable conductance, which is proportional to a '"' '.

V; '' « « ^

In other words, Archie's law comes from the fact that the
porosity and conductivity are influenced by different parts
of a skewed "pore size" distribution. A large value of the
exponent m implies that there are large pores that
contribute little to the conduction.

The difficulty in applying the shrinking-tube model to
real rocks is the mapping of a random pore space into a
simple network, because there is no simple algorithm for
transforming an irregularly shaped pore into an equiva-
lent tube. In this respect the "grain consolidation" model
invented by James Roberts and Lawrence Schwartz of
Schlumberger-Doll Research is very helpful." Roberts
and Schwartz began with a computer model of the dense
random sphere packing (figure 3a) and constructed
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Wigner-Seitz-like cells, called Voronoi polyhedra, for each
sphere. The vertices of the polyhedra are identified with
the nodes of the network, and the edges are the bonds. The
spheres are then allowed to grow uniformly to create
larger contact areas with neighboring spheres, thus
mimicking the consolidation process. By keeping track of
how the porosity and conductivity decrease together,
Roberts and Schwartz found that Archie's law is obeyed
approximately over much of the porosity range of practi-
cal interest. The reason the grain-consolidation model
works is similar to the reason the shrinking-tube model
works: The porosity is due mainly to the open regions
around the nodes, while the conductances are controlled
by the narrow "throats" of the bonds. Figure 5, which
shows the formation factor F as a function of the porosity
for this model, demonstrates that the model describes the
rock data as well as Archie's law does. The only
significant difference is that for the grain-consolidation
model the critical porosity at which the conductivity
vanishes is finite—about 3.65%—because the uniform
grain growth closes off the throats before the radii reach
the vertices of the Voronoi polyhedra. Because most rocks
of practical interest have higher porosities, this difference
is unimportant. On the other hand, we should note that
the above description of conductivity neglects the mobile
counterions on the fractal clay surface. This involves a
whole new set of problems, and interested readers are
referred to reference 7 for a brief discussion.

Permeability and length scales
The merits of the shrinking-tube and grain-consolidation
models are not so much that they describe the real
diagenetic processes as that they capture some basic
features of pore geometry and provide a common ground
for examining the relationships among various rock
properties. The network picture gives a simple under-
standing of the formation factor F. In both models, there
is a characteristic bond length that scales with the grain
size lg, and a characteristic throat size Zt for transport.
Hence the characteristic conductance gr is proportional to
a^l2ll%. Because the conductance gw of a volume / | of
water is proportional to a\
that

F=g^
g,

, L, it follows from equation 6

-'I (7)

The constant (3 is related to such nonuniversal properties
as the bond coordination number of the network and how
the effective bond length scales with the actual grain size.

The concept of throat size has been refined by David L.
Johnson and his coworkers at Schlumberger-Doll Re-
search12 as a weighted volume-to-surface ratio called A,
given by

Here Vp and Sp are the pore volume and the pore surface,
respectively, and Eo is the electric field in the rock in the
absence of a permanent surface charge. Because the
weighting factor |.E0|2 is largest in the narrowest throats,
A is an effective throat size. In the grain-consolidation
model, for example, Schwartz has shown that the forma-
tion factor is proportional to A"2 for porosities far from
the critical porosity, in agreement with equation 7. Near

0.002 0.01

WAVEVECTORq(A-1)

Neutron scattering data for sandstone. The
intensity of neutrons scattered at small angles
shows the power-law behavior described by
equation 4 plus a constant background. This
behavior supports a fractal pore-surface
picture below 500 A. Figure 4

the critical porosity, A becomes dependent on how the
throats are connected.

Using the network picture and equation 7, we can
easily describe how a single fluid flows through porous
rock. We recall that for Poiseuille flow through a
cylindrical pipe of radius R, the flow rate is given by

8//
Here ft is the viscosity of the fluid and VP is the pressure
gradient. Now if we fill the pipe with grains of size lg, then
the number of small throats running in parallel through a
cross section of the pipe will be proportional to R2ll^, so
that the flow rate becomes

Q, 8//

Dividing through by TTR2 gives the well-known Darcy's
law, an analog of Ohm's law, for the effective flow velocity:

v = - — VP (8)

The factor k is an analog of the conductivity called the per-
meability and is given by

k^lpl; (9)

The permeability can be related to the grain size or throat
size by combining equations 7 and 9:

k^c^/F2 (10)

k = c2l?/F (11)

The factors c, and c2 are dimensionless constants. These
relationships are based on the simple pictures of the
shrinking-tube and grain-consolidation models: The rock
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has a well-defined grain size; the network is well connected
and can be replaced by the most probable bond. Equations
10 and 11 have been tested out on both Ridgefield
standstone and real rock.1 (i The experiments have found
that the prefactors c, and c, are approximately 0.01.

Although equations 10 and 11 are derived only
heuristically, they can be justified by percolation theories.
Bertrand Halperin at Harvard University and his cowork-
ers have studied a "Swiss cheese" model in which the holes
are like the sand grains and the cheese is like the pore wa-
ter.13 If we make more and more holes, the cheese fraction
<f> approaches a threshold <f>c at which the conductivity
vanishes as F~\ or (</> - <t>c)', and_ the permeability
vanishes as (<j> - < .̂)''. The exponents t and e are found to
be about 2.4 and 4.4, respectively, giving a permeability
proportional to F ~ ~e", or about F ~' K, which is nearly the
same as the noncritical F ~'2 behavior in equation 10.

Alan Katz, now at Texas Instruments, and Thompson
use a clever mercury injection method6 to determine /, in
equation 11. They monitor the resistance across each
sample while applying pressure to force mercury into the
pores. Because mercury is a nonwetting fluid, it can pass a
throat of size /, only if the pressure exceeds a capillary
pressure of order y/lt, where y is the surface tension. At
some critical pressure Pc, the injected mercury forms a
percolating path across the sample and is detected by a
sharp drop in the resistance. This defines a critical throat
size lQ that can be used in equation 11.

Viscous fingering
Having understood how water flows through rock, we can
now proceed to discuss how oil and water displace each
other. Hydrocarbons are generated at a "source rock" by
the decay of organic matter in an oxygen-deficient
environment. Because of their low densities, hydrocar-
bons migrate along permeable beds in a generally upward
direction until they are trapped by geological structures
made of low-permeability "cap rock." The region of the
trap is called "reservoir rock" and always contains both
water and oil. The determinations of the oil saturation Sa
and water saturation Sw in the reservoir and their relative
permeabilities kQ and £w are among the most important
rock physics problems for oil companies. The product <f>So
tells them how much money (in oil and gas) they have in
reserves, while kko tells them how fast the money can be
withdrawn. While <f> and k are intrinsic properties of the
rock, So and ko depend on how the oil and water are
distributed and move through the pores. The fundamen-
tal problem here is to understand how various patterns
develop as an invader fluid displaces a defender fluid.
Some of the most interesting patterns can be observed in a
Hele-Shaw cell where a low-viscosity invader displaces a
high-viscosity defender in a thin gap between two glass
plates.14 Figure 1 shows some beautiful examples.15

Figure la is a displacement pattern of miscible fluids,
namely water (dyed blue) invading glycerine. The fractal
branching structure is similar to that obtained by diffu-
sion-limited aggregation.16 The reason is believed to be
that both phenomena are approximately described by a
Laplace equation. In diffusion-limited aggregation, the
growth is controlled by a density field u that obeys the dif-
fusion equation

If the growth is slow enough that the diffusion length /„,
denned as D/v, goes to infinity, then this expression
reduces to V"u = 0. In the Hele-Shaw problem, the
velocity field v obeys equation 8 with k = b~/12, where b is
the gap size. In the limit that the pressure field P varies
mainly in the defender, one finds that

Here K is the defender's compressibility. By comparison
with equation 12 one finds an equivalent diffusion length
/,.,,, equal to k/fiKv, which for typical experimental
conditions is longer than a kilometer. So the fluids can be
considered incompressible and V2P = 0.

The same analogy applies to many other systems, the
most notable one being the growth of snowflakes.17 There
the latent heat of solidification has to diffuse away from
the seed crystal, and the temperature field T obeys the
equation V~T = 0. The difference is that a snowflake has
well-ordered dendrites due to its crystalline anisotropy. If
one etches a square network of uniform grooves into one of
the Hele-Shaw plates, a giant snowflake pattern is easily
obtained (figure lb). Another well-known example is the
electrochemical deposition of metal through an aqueous
electrolyte.1618 There the electrostatic potential 4>e and
the concentrations c± of positive and negative ions
combine to give the chemical potentials <S> ± , given by
q ± <i>e + kB T log c ± , where the q ± are the charges of the
ions, and V2<t> ± = 0. By adjusting the applied voltage and
the electrolyte concentration, one can vary the relative

1000

O
o<

o

O

100 -

10 30

POROSITY (percent)

100

D dt D
(12)

Formation factors for 52 real rocks (circles)
and 12 "toy rocks" made of fused glass beads
(squares). Both types of rock are roughly
described by the empirical Archie's law,
equation 6, with the exponent m equal to 2
(straight line). The colored curve represents
results of the grain-consolidation model
calculation. Figure 5
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strengths of the two terms in the expression for <t> + and
observe a transition from a diffusion-limited aggregation
pattern to a dendritic pattern.

Surface tension. In the case of oil and water, which
as we all know do not mix, we must consider another
factor: the surface tension y. The immiscibility has two
important effects. First, it suppresses the branching
structure at short length scales.1' Figures lc and Id show
the displacement patterns of immiscible fluids, namely oil
invading glycerine. These patterns have the same general
character as those in figures la and lb except that the
fingers are much wider. The reason for this is that the cre-
ation of a bump of size lind dimensions costs a surface en-
ergy yld ~ 1 but saves a volume energy A.PZ'7, where AP is
the pressure drop across the system. Hence the bump size
must be greater than y/hP, which is denned as the
capillary length Zca and sets a minimum size for the finger
width. In more general cases, there are other mechanisms
that further increase the finger width. For example, in
the growth of a snowflake, the diffusion length lD
characterizes the decay of the temperature field away
from the interface; the spreading of the associated heat
current smooths out the interfacial structure and gives a
finger width of approximately (3ZDZC., )x'2. In the Hele-
Shaw cell, because the equivalent diffusion length Zeq is
much larger than the cell, the size and shape of the cell
and the wettability of the plates become important
factors.14

The second important effect of surface tension is that
it creates capillary forces on the tiny oil-water menisci in
the pores. Putting aside the fractal nature of the pore
surface, the meniscus perimeter scales with the grain size
lK and its area scales as Zf. Thus the interfacial pressure
APr is proportional to yla/lf. The viscous pressure drop
APvis across a grain is proportional to ZgVP, or l^/iv/k, so
the ratio i?,.,, of the interfacial pressure to the viscous
pressure is approximately19

yklnvl't = k'/Nca

Here k' is denned as k/lf and N^, called the capillary
number, is defined as fiv/y. In real rock, k' is typically less
than 10~3. Because a typical flow velocity v in a reservoir
is about 1 ft/day, or 4 microns/sec, Nca < 10~6, Rrv > 103

and the viscous pressure has little effect at length scales
below a characteristic value Zcv given by lgRrv This
characteristic length Zcv defines a crossover length be-
tween capillary and viscous effects and is typically on the
order of 1 meter. Viscous fingering is, therefore, a large-
scale reservoir phenomenon.

Invasion percolation
Below the crossover length, the interfacial pressure APy
becomes the dominant driving force. It is clear that if the
invader is the wetting fluid, it will first go into the smallest
pores. Conversely, if the invader is the nonwetting fluid, it
will first go into the largest pores. It is believed that
sandstones are often water wet, and carbonate rocks oil
wet. To simulate this invasion process on a network, one
can assign a random number to every bond and select
bonds sequentially to represent the invaded pores. If the
selection follows the order of the random numbers, then it
is just the ordinary bond percolation. If, however, one
selects the most favorable bond at the invasion front, then
one obtains the invasion percolation model."" This model
ensures that the invader flows along a continuous path,
but it allows the defender to be completely surrounded and
form a trapped cluster.

An experimental demonstration of these effects uses a
two-dimensional network of random ducts etched into a

glass plate.20 Figure 6 shows a pattern that Roland
Lenormand, now at Institut Francais du Petrole, obtained •
by slowly injecting air into paraffin oil in a 350x350 ;
network, a nonwetting invasion. The connected white
area in the photograph is the air, and the disconnected
black patches are the trapped oil. The pattern is visually
very different from those in figure 1, created by viscous
forces, but both are fractals. An analysis of the invader
cluster in figure 6 gives a fractal dimension df of about 1.8,
which is slightly different from the value of 1.9 for the infi-
nite cluster in ordinary two-dimensional percolation.20

However, this difference turns out to be an artifact of the
two-dimensional square lattice, because only one phase
can form an infinite cluster. For a real, three-dimensional
rock, it is generally believed that invasion percolation is
basically the same as ordinary bond percolation except
that the invader can only move on the infinite cluster. As
a result, the threshold for the invader occurs at zero
saturation, while that for the defender occurs at a nonzero
value called the irreducible saturation, at which the i
defender is broken up into immobile clusters. This is one
of the main reasons why a large fraction of the hydrocar-
bons in a reservoir is not easily producible.

To assess the oil and water saturations in a reservoir,
a common practice is to measure the rock conductivity and
assume a modified Archie's formula9:

The exponent n is often taken to be the same as m. The
foundation of this formula is weak, however, because the
distribution of oil and water in the pore is known to be de-
pendent on history. The water pattern at any saturation
Sw depends on both the initial state and the rate at which
it is changed. One assumes that over geological times the
change is quasistatic.

In the laboratory, the growth of such a fractal cluster
is very time consuming, and if it is not properly
equilibrated at the start of an experiment, all subsequent
data points can be meaningless. The mercury injection
experiment of Thompson and his coworkers demonstrated
the effects very nicely.6 By performing slow measure-
ments with high precision, they found that the injected
volume undergoes a small first-order jump as the mercury
forms a connected cluster across the rock at a critical
pressure (figure 7a). Thereafter the resistance of the
sample decreases through an infinite number of steps like
a "Devil's staircase" as the pressure is increased (figure
7b). (See Per Bak's article "The Devil's Staircase," PHYSICS
TODAY, December 1986, page 38.) For each small step in
pressure, the resistance approaches a new equilibrium
value according to a stretched exponential relaxation that
takes many hours. The total number of equilibrium
resistance steps larger than Ai? follows a power law
AT? ', where A varies between 0.57 and 0.81 for various
rocks.

It turns out that at least the static behavior is
understandable in terms of invasion percolation. Because
the mercury can only occupy the infinite cluster and
leaves all the disconnected clusters empty, its advance in
one bond can make a large disconnected cluster behind it
accessible. Because the experiment is carried out at
constant pressure rather than constant flow rate, the
mercury can invade the entire cluster once it becomes
accessible, and clearly the largest clusters occur near the
threshold. Both computer simulation studies and scaling
analyses"1 show that such a cluster-by-cluster invasion
mechanism would give a resistance staircase with 1 in
good agreement with experiment.
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Gravity and wettability. In applying the invasion
percolation concept to oil and water in a real reservoir,
there are two important complications. The first has to do
with the density difference Ap between oil and water.19

This difference creates a gravitational pressure gradient
VPg between the two phases and hence a vertical
saturation gradient, so the lighter oil will have a higher
saturation near the top of the reservoir. The transition
between oil and water zones takes place over a height h
given approximately by AP,, / VPg. To represent this effect
in a percolation model, one would include a bond
concentration gradient Vp proportional to 1/h. The ratio
lg Ih is called the Bond number NB. (For a packing of 100-
micron spheres, NB is of order 10~4.) David Wilkinson of
Schlumberger-Doll Research has pointed out19 that such a
gradient destroys the critical behavior of percolation,
because the correlation length £ normally diverges as
lg(p—pc)~v and the gradient makes it impossible for
p—pc to be less than £Vp. As a result, (g/le)~1/v < £NB I
lg, or

T - v / ( l + > • > _> • > _ t
= S r r

This is actually a general result for all critical phenomena
with an imposed gradient. For example, a thermal
gradient on a ferromagnet would cut off the correlation
length divergence at the Curie temperature, but the effect
is often difficult to observe. Here, however, because v is
about 0.8 for three-dimensional percolation, the exponent
v/(l + v) is about 0.47 and £max is only a few hundred times
lg, or a few centimeters. Because g max is the size of the lar-
gest blob of trapped fluid, this smearing of the percolation
critical point has the fortunate consequence that we can
extract more oil in the presence of gravity than we could
without it. It also explains the jump in mercury satura-
tion in figure 7, because the volume fraction of a
percolation cluster of size £max is of order (£max/lK) ' ,
which is about 10% or less; d{, the fractal dimension of the
percolation cluster in three dimensions, is about 2.5.

The second complication of invasion percolation has
to do with wetting effects. Lenormand pointed out that

Percolation of air through paraffin oil in a 350x350 network
of randomly sized grooves etched into a glass plate.20 At a
sufficiently slow flow rate, the oil is displaced pore by pore
through the invasion percolation mechanism. The light area is
the air, which forms a connected path across the sample.
The dark regions are immobile, disconnected patches of
trapped paraffin oil. Such trapping is a major cause of low oil
recovery from a reservoir. (Photograph courtesy of R.
Lenormand, Dowell-Schlumberger.) Figure 6

during invasion the menisci from neighboring ducts can
touch each other on their edges and collapse into a single
meniscus.20 For wetting and nonwetting invasions, re-
spectively, this draws invader fluid into pores that are
larger or smaller than those predicted by invasion
percolation theory and smears the percolation structure at
short length scales. The effect is expected to be more
severe for a wetting invasion, in which the menisci's edges
are always ahead of their centers. However, even for the
nonwetting invasion in figure 6 the invader cluster is
essentially compact at short length scales due to this
mechanism. An interesting question is how the crossover
from compact to fractal structures depends on the contact
angle 0, which is a measure of the wettability.

Experimental and theoretical studies of this problem
have recently been carried out for systems that are more
like real rock. A group led by James Stokes and David
Weitz of Exxon Research and Engineering put glass beads
in the gap of a Hele-Shaw cell to conduct both wetting and
nonwetting invasion experiments.22 By choosing the
proper capillary number, they made the crossover length
/cv somewhere between the cell size and the grain size so
that they could observe both viscous fingering and
invasion percolation patterns. While this was indeed
what they saw in the nonwetting invasion runs, they found
that wetting invasion runs gave compact fingers with
average widths that cannot be explained easily by any
existing theory. On the theoretical side, Marek Cieplak
and Mark Robbins of Johns Hopkins University have
carried out a two-dimensional simulation using random
circles to represent the grains, and the spaces between
them the pores.23 They found that the invader pattern is
compact below a size Wthat depends on the contact angle
0. In the entire nonwetting invasion regime, for which 0
is greater than 90°, the size W is about five lattice
constants, which is consistent with the experiments.
However, in the wetting invasion regime, for which 0 is
less than 90°, the size ^appears to diverge at a critical con-
tact angle 0C as (0 — 0C) ~ 2 3, suggesting a critical
phenomenon.

The studies of viscous fingering and invasion percola-
tion on model systems discussed above may seem academic
to some, but the practical implications of such understand-
ing are enormous. In a typical producing reservoir water
or gas displaces a more viscous oil. So on length scales
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larger than lcv, the fractal viscous fingering pattern
(figure la) leaves large regions of oil untapped. Even
below /cv, the invasion percolation trapping mechanism
leaves behind large blobs of oil of size | m a x within the
fingers where oil is displaced (figure 6). As a result, most
of the oil is left in the ground: Common estimates24 for re-
covery efficiencies range from 5% to 50%. To overcome
this problem, one would have to optimize the operating
parameters of the reservoir. For example, making /cv as
large as possible will reduce the fingering effect, and
modifying the wettability with chemicals to ensure 0 < Qc
will minimize the percolation effect. Because the cross-
over length /cv is inversely proportional to the flow
velocity v, an anxious oil producer who speeds up pumping
for a short-term gain will make most of the oil unproduci-
ble. Understanding the basic science, on the other hand,
will result in a better long-term gain.24

I found the quote that begins this article in E. Courtens, R. Vacher,
Zeitschrift fur Physik B 68, 355 (1987). I thank E. Courtens for
sending me the reprint.

I am grateful to my friends at Schlumberger-Doll Research
for stimulating my interest in rock physics. It has truly been a
great pleasure to have learned from and worked with them over the
last six years. I hope this article will preserve some of the good
spirit and fond memories we share.
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