Anyone interested in spatiotemporal organization in biological systems will enjoy and profit from reading Winfree's incisive and brilliantly inventive thoughts about cardiac function and failure.

# Physics at Surfaces

Andrew Zangwill Cambridge U. P., New York, 1988. 454 pp. \$69.50 hc ISBN 0-521-32147-6; \$27.95 pb ISBN 0-521-34752-1

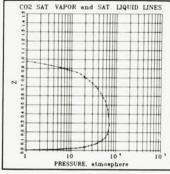
At last the physics and physical chemistry communities have available the book that has been so badly needed for so long. I am referring to the delightful Physics at Surfaces by Andrew Zangwill just published by Cambridge University Press. Zangwill calls the book "a traveling companion—a tour guide if you will-through the world of surface physics.... [but] not a textbook-at least not in the traditional sense." By rights it nonetheless will become the classic "teaching book" for graduate-level introductory courses in solid-state surface physics. But the book also provides the coherent synthesis of much of what purports to be surface physics that active teachers and researchers in the field are so in need of.

The book is sensibly structured. with an inevitable division between clean and adsorbate-covered surfaces. Thermodynamic arguments are presented as useful complements to the detailed microscopic models here, in contrast to the usual situation, in which thermodynamics appears to be invoked only by default. Within each half of the book, separate chapters cover crystal structure, electronic structure, phase transitions, and excitations and energy transfer. Such scope necessarily dictates a certain lack of rigor in a book of roughly 450 pages. Fortunately, Zangwill consistently comes up with enlightening simple arguments and physical pictures (which could easily be obscured by more rigor) presented in conjunction with actual data, either computed or observed. Zangwill displays in a very positive way to the reader the scenario by which system-specific individual studies are woven into the fabric of a "bigger picture." Make no mistake though, this is not a handbook or a "how to" recipe book for setting up shop as a surface-science tradesman; instead, it suggests by example how to look at nature, as surface physicists see it, from a vantage point where the attainment of understanding is deemed a more important goal than gathering in yet

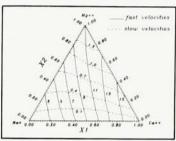
another concept-free number. The necessity of a symbiotic relationship between experimental and theoretical inquiry is evident throughout. For the reader who has a reasonable mastery of solid-state physics at the level of Neil Ashcroft and David Mermin's Solid State Physics (Holt. Rinehart and Winston, Philadelphia, 1976), the book is self-contained. Although not intended as either a comprehensive review or a research monograph, the book has nearly 600 well-chosen references. On this basis, the reader should be able to enter the research literature sensibly.

Physics at Surfaces, used together with Gerhard Ertl and Jürgen Küppers's fine, techniques-oriented monograph Low Energy Electrons and Surface Chemistry (VCH, Weinheim, FRG, 1985), would be an ideal combination for teaching a graduate course. Both Zangwill and Cambridge University Press are to be complimented for providing this handsome volume in not only hardcover but also inexpensive paperback. making the book financially accessible to everyone with an interest in surface physics. Certainly anyone who is now being introduced to the discipline of surface physics will find his or her training profoundly and positively influenced by the availability of Physics at Surfaces.

> J. W. Gadzuk National Institute of Standards and Technology


### Spin Glass Theory and Beyond

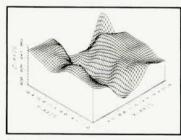
M. Mezard, G. Parisi and M. A. Virasoro


World Scientific, Singapore (Teaneck, N. J.), 1987. 461 pp. \$86.00 hc ISBN 9971-50-115-5; \$48.00 pb ISBN 9971-50-116-3

The term "spin glass" first became widely used about 15 years ago. It was coined to describe disordered magnetic systems that appeared to have a phase transition to a state in which each magnetic atom was aligned but the direction of alignment varied randomly from one atom to another. In 1975 David Sherrington and Scott Kirkpatrick wrote a paper that had the provocative title "Solvable Model of a Spin Glass," but which presented a paradox rather than a satisfactory solution. Not until four or five years later did Giorgio Parisi find an apparently satisfactory solution. Several more years elapsed before the significance and physical interpretation of this solution were understood.

# SCIENTIFIC GRAPHICS




Linear-linear log-linear, linear-log, and log-log graphs may be displayed with GRAPHER\* Over 20,000 points may be



With GRAPHER\* you may place axes and text anywhere nt may be rotated to any angle and scaled



SURFER\* quickly and easily creates contour maps from your irregularly spaced XYZ data. You may specify axes with tic marks and labels posting irregular contour intervals and multiple shaped boundaries



SURFER\* has the most impressive 3-D surfaces available Your 3-D surfaces will brilliantly visualize your data. You may use your own XYZ data or enter an equation to generate a surface

For the IBM PC & compatibles

GRAPHER™ ...... \$199 SURFER" .....\$399 Demo/Tutorial Disks ..... \$10

#### **FREE Brochure**

Give us a call for a free graphics brochure. 1-800-972-1021 (or 303-279-1021)

GOLDEN SOFTWARE, INC. 807 14th St., Golden, CO 80401



Purchase orders are welcome.

This book is devoted entirely to the work that has been done on the Sherrington-Kirkpatrick model and to developments that have followed from that work; it does not touch on the problems of real random magnetic systems. The authors give a masterly account of the work on the model in the first 85 pages. Such a summary cannot be found elsewhere. and much of our current understanding of the problem is due to the authors of this book and their collaborators. Twenty-four reprints on the subject follow. The predominant theme of this first part of the book is that the model describes a system that has many equilibrium states at the same temperature, and that these states are organized with an ultrametric structure.

The rest of the book is devoted to two applications of the ideas that were developed to deal with the spin glass model. Both original text and relevant reprints are included. The first application considered is work on optimization problems such as the traveling salesman problem. The relevance of the spin glass work to this famous problem is that multiple equilibrium states are analogous to the many local minima of the traveling salesman problem, and in both cases techniques are needed that will find properties of the global minimum or minima.

The section entitled "Biological Applications," apart from a two-page summary of Philip Anderson's work on prebiotic evolution, is devoted entirely to John Hopfield's model of neural nets and various modifications of it. Here there is a correspondence between the multiple equilibrium states of the spin glass and the multiple memories stored in a neural net.

The first part of the book describes clearly and authoritatively the remarkable properties of the infiniterange spin glass, and the reprints are well chosen to show how the theory developed. The theory is so interesting that I feel it ought to describe real physical systems, but many of us doubt that real spin glasses have more than a small proportion of the model's rich and novel properties. The remainder of the book, on the applications of the theory to other fields, is sketchy rather than comprehensive. I feel that the spin glass experts are like settlers encamped in hostile territory. They have interesting observations to make, but have not learned how to communicate with the earlier settlers. In some of the papers on neural nets there is barely a reference to work by scientists outside the spin glass community.

This is an important book, which every physics library should have. It is also good reading for anyone who wants to know about these aspects of the spin glass problem, and why "replica symmetry breaking" and "ultrametricity" may be important.

DAVID J. THOULESS University of Washington

# Statistical Field Theory

Giorgio Parisi

Addison-Wesley, Redwood City, Calif., 1988. 352 pp. \$48.50 hc ISBN 0-201-05985-1

The symbiotic relationship between statistical mechanics and quantum field theory has come into much prominence in recent years, particularly since the introduction in 1971 of Kenneth Wilson's renormalization group approach. Just as field theory proved to be the natural language with which to describe and perform computations for critical phenomena, the renormalization group approach led to a clearer notion of such concepts in field theory as the continuum limit. A major character in this interplay between the two areas of theory has been Giorgio Parisi. He has made seminal contributions to both, ranging from his work on Monte Carlo simulation of gauge theories to his extremely original notion of replica symmetry breaking in the theory of spin glasses.

One is always interested in knowing more about the insights such leading figures have into their subject matter. A textbook, where a more leisurely pace prevails than in research papers, is surely one of the most fertile sources of priceless insights. However, rarely do active researchers find the time or the motivation to write up their unique perspectives. Fortunately for us Parisi has chosen to do just that, and I waded into the material most eagerly. It lived up to its promise.

As one may infer from the title, the book contains detailed treatments of a variety of special topics: spin models, path integrals, Euclidean field theory, renormalization group approach, non-equilibrium processes and computer simulations. I am not aware of any other book that covers all these topics or their interrelationships.

The book is self-contained and accessible to any beginning graduate student who is willing to be guided by it. Every idea that is introduced (the  $\varepsilon$  expansion is a notable example) is treated in some depth, with all the  $2\pi$ 's in place, so that the student can start working on real problems after

going through the material. Several ideas from rigorous statistical mechanics, such as the Osterwalder–Schrader positivity conditions or the theory of symmetry breaking, are explained in the simplest possible terms, but without compromise.

The book does not include any problems, so it probably would not be easy to use as a text, unless the instructor came up with the problems himself. On the other hand, it is ideal for self-study or study by a journal club that wants to master this very fundamental subject and needs just a good introduction, as well as a guide through the literature, or simply for those who work in the field.

I recommend the book without reservation to this audience. It is bound to become a canonical reference in the future. An adviser who is confronted with a student wanting to work in this field and needing an introductory text can now tell the student to get a copy of Parisi's book and call back after finishing it.

RAMAMURTI SHANKAR Yale University

# The Physics of Structurally Disordered Matter: An Introduction

N. E. Cusack

Adam Hilger, Bristol, UK (US dist. Taylor and Francis, New York), 1987. 402 pp. \$162.00 hc ISBN 0-85274-591-5; \$68.00 pb ISBN 0-85274-829-9

The general topic of structurally disordered matter entered into the mainstream of condensed matter physics roughly two decades ago, although most beginning (and even advanced) texts that one is likely to encounter in a typical university solid-state physics course give the subject short shrift. The reasons aren't too difficult to uncover: Our understanding of "disordered" systems lags far behind that of their "ordered" counterparts; most important issues in the various fields are a long way from being settled; and there are few central unifying theories to lend coherence to the subject. (There is even some disagreement on which problems properly belong to the subject.) As a result, there are few texts that extensively treat both ordered and disordered systems, that is, electrons in periodic and random potentials, crystals and glasses, crystalline and amorphous semiconductors, and so on.

Despite the difficulties posed by writing a pedagogical text on disordered systems, the number of such books has been steadily increasing