APS PRESENTS 1987 PEGRAM AND BEAMS AWARDS

At its annual meeting, which took place in Nashville, Tennessee, last November, the southeastern section of The American Physical Society honored two individuals for outstanding physics teaching and research.

Walter Curtis Connolly (Appalachian State University, Boone, North Carolina) received the George Pegram Award for physics teaching. He has been at Appalachian State since 1963, when he founded the university's physics department, and he served as department chairman in 1963–74. Prior to that he taught at

the US Naval Academy, Auburn University and the University of Virginia. Since 1985 he has been an assistant editor of *The Physics Teacher*.

David P. Landau (University of Georgia) received the Jesse Beams Award for physics research in the Southeast. Landau received his BA from Princeton University in 1963 and his PhD from Yale in 1967. He joined the physics and astronomy faculty at Georgia in 1969 after holding a postdoctoral position at CNRS (Grenoble) in 1967-68 and teaching at Yale in 1968-69. He has used Monte Carlo simulations to study excitations and phase transitions in condensed matter systems. Landau is now director of the University of Georgia's Center for Simulational Physics.

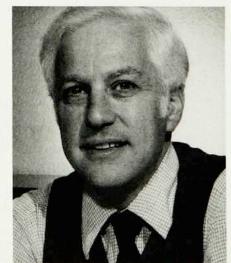
IN BRIEF

A. Douglas Stone, associate professor of applied physics at Yale University, received the 1987 William L. McMillan Award of the University of Illinois at Urbana–Champaign for his "outstanding contributions in condensed matter physics."

Sidney Perkowitz, professor of physics at Emory University, has been named Charles Howard Candler Professor of Condensed Matter Physics.

Donald F. Nelson, formerly a member of the technical staff at Bell Labs (Murray Hill, New Jersey), in September became a professor of physics at the Worcester Polytechnic Institute.

Lorenzo Narducci, professor of physics and atmospheric science at Drexel University, has been named the first Francis K. Davis Professor of Physics and Atmospheric Science at Drexel. Eberhardt Rechtin, president and chief executive of the Aerospace Corporation, has been elected an honorary fellow of the Institute of Environmental Sciences for advancing the science of aerospace testing "both through technical and leadership contributions."


Venkatesh Narayanamurti, vice president for research at Sandia National Laboratories, has been elected a member of the Swedish Academy of Engineering Sciences.

Nick Kaiser, currently at the Institute of Astronomy at Cambridge University, UK, has accepted a position as associate professor at the Canadian Institute for Theoretical Astrophysics in Toronto. The institute has awarded him a five-year fellowship, which will commence on his arrival this spring.

used ultrafast electronic timing techniques to measure the lifetimes of excited states of rotational nuclei that were critical to the confirmation of the theory of these special nuclei. He and Crt Zupancic used the first proton beams from the Alternating Gradient Synchrotron to show, remarkably and unexpectedly, a high yield of deuterons and tritons; from this came the concept of final state coalescence, which remains a powerful insight to this day. With members of the theory group, he resolved a longstanding error in the formalism of angular correlations of conversion electrons, and thus brought consistency to a basic tool of nuclear spectroscopy. With Andrew Sunyar and Philip Conners, he measured the charges of particles in cosmic rays to set the first limit on the free-quark flux among high-energy particles. In collaboration with Werner Brandt and others, he explored the dynamics of K-shell ionization by nuclear projectiles, and thereby set the stage for a new theoretical attack. Together with members of the Brookhaven Tandem Van de Graaff and nuclear theory groups, Schwarzschild took an important part in the experiments and analyses that established fundamental mechanisms of heavy-ion reactions.

His personal experimental and analytical style was that of simplicity and technical economy, very much as a hands-on, direct-action physicist, but he also understood clearly the nature of the sociological change enveloping nuclear physics and the need to devise new forms tailored to the specific needs of the new, larger nuclear experiments. He took charge of the creation and operation of an outside-user program in the earlier stages of the Brookhaven Tandem Van de Graaff; the novel format of this pro-

Arthur Schwarzschild

OBITUARIES

Arthur Schwarzschild

The death of Arthur Schwarzschild on 13 August 1987, following a heroic five-year struggle with cancer, ended a distinguished career in nuclear physics. Schwarzschild's contributions as a research scientist, as an administrator and as a statesman of the nuclear community spanned a very wide range. All of his activities were marked by an adventurous enthusiasm for scientific discovery coupled with an intense caring for the people involved.

Schwarzschild was born in 1930

into a family whose members made memorable contributions to physics. His doctoral dissertation (1957) with C. S. Wu at Columbia University explored the beta spectrum of helium-6. After receiving his degree he went to Brookhaven National Laboratory, where he began what was to become a broad set of investigations into many aspects of many nuclear problems. His great range of interests, his diversity and his creativity can be seen in a brief sampling of his major contributions.

In collaboration with Angela Li, he

For access to the worldwide research literature...

Physics Briefs

Information Products and Services

A Valuable and Comprehensive Source of Bibliographic Data in Physics

A major contributor to the current revolution in information technology, **Physics Briefs** enables scientists and engineers to search the worldwide research literature, to identify the most useful papers, and to obtain complete bibliographic data including abstracts.

Full coverage of the international research literature

Physics Briefs draws its information from over 2800 scientific and technical journals, patents, conference proceedings, technical reports, dissertations, theses, books, and other works. Each record in **Physics Briefs** includes an English language abstract, associated bibliographic citation, extensive index entries, and other related information. The database now contains over one million references, supplemented by two updates each month that add over 130,000 records per year. Often, the availability of a record is simultaneous to the publication of the corresponding article. For articles published by the American Institute of Physics, records appear six to twelve weeks earlier in **Physics Briefs** than in other databases.

Physics Briefs coverage includes:

- Mathematical and Theoretical Physics
- Measurement Techniques and Instrumentation
- · Elementary Particle and Nuclear Physics
- · Atomic and Molecular Physics
- · Electromagnetism, Optics, and Acoustics
- Thermal and Thermodynamic Processes
- Mechanics, Elasticity, Rheology, and Dynamics
- Fluids, Plasmas, and Electric Discharges
- Condensed Matter: Structure, Mechanical and Thermal Properties
- Electronic Structure
- · Electrical, Magnetic, and Optical Properties
- Materials Science, Physical Chemistry, and Biophysics
- · Geophysics, Astronomy, and Astrophysics

A variety of formats allowing greater flexibility

Online Service pinpoints the exact bibliographic data you need for scientific research. References and abstracts since 1979 are available through STN International—the worldwide network of major scientific and technical databases.

Abstracts Journal keeps individual scientists and engineers apprised of the most up-to-date physics research. In addition to the 24 semimonthly issues, semiannual author and subject indexes are included in an annual subscription.

Magnetic Tape Service enables an organization to supply data to many departments and individuals from a central in-house source. Semimonthly tapes for the current year are available as well as the complete backfile from 1979.

Physics Briefs is produced by Fachinformationszentrum Energie, Physik, Mathematik in cooperation with the American Institute of Physics.

For information on any of these services, please write to:

American Institute of Physics

Marketing Services/Dept. AM 335 East 45th Street New York, NY 10017 gram encouraged both outside and inside investigators to function symbiotically. As associate group leader of Tandem Van de Graaff research (1971–78) and as physics department deputy chairman for nuclear physics (1978–81) he devoted himself to the growth of both the in-house and outside facets of BNL's nuclear program.

In the latter period, and as chairman of the physics department (1981-87), he led the effort to reorient the BNL nuclear program and to devise an opening into the new frontier of relativistic heavy-ion studies. Indeed, it was Schwarzschild's suggestion that a transfer line could be used to inject heavy ions from a BNL nuclear accelerator into the Alternating Gradient Synchrotron, and so make a relativistic heavy-ion facility more immediately available. He also played an important role in the successful LEGS proposal, whereby gamma rays with energies up to 300 MeV are produced by backscattering laser light from relativistic electrons at the National Synchrotron Light Source.

He served the nuclear community as a member of committees of the division of nuclear physics of The American Physical Society, of advisory committees to various institutions, and of the DOE–NSF Nuclear Science Advisory Committee.

Schwarzschild fought against his cancer with the same positive spirit that characterized him as a physicist, and brought to the physicians who treated him that scientific curiosity and helpful interaction that also marked him as a scientific leader with his colleagues. His resignation as chairman preceded his death by only a short time; he had hoped, if time were to be made available to him, to tackle one of the formidable puzzles of present-day nuclear physics: the sharp positron lines emitted in veryheavy-ion reactions. He lived as a scientist to the very end.

PETER BOND
JOSEPH WENESER
Brookhaven National Laboratory
Upton, New York

Nelson Stein

Nelson Stein died suddenly in Santa Fe, New Mexico, on 23 April 1987, bringing to a premature end a productive career in experimental nuclear physics. Stein was born in New York City on 23 July 1936. He received a BS from the City College of New York in 1957 and obtained a PhD in nuclear physics from the University of Illinois in 1963. He did his thesis work in

photon scattering from lead and bismuth nuclei under the direction of the late Peter Axel.

After receiving his doctorate, Stein spent three years as a postdoctoral fellow at the University of Washington in Seattle, where he used cyclotron and tandem Van de Graaff accelerators to study proton-transfer reactions and isobaric-analog spectroscopy

Stein joined the physics staff at Yale University in 1966 as a research associate and became an assistant professor in 1968. He taught physics courses at both the undergraduate and graduate level, and became well known for his experimental work on isobaric-analog states and the structure of nuclei in the lead region.

In 1972 Stein left Yale to spend the summer as a NATO senior postdoctoral fellow at the Center for Nuclear Research in Strasbourg, France, and that fall he took a position as staff physicist at Los Alamos National Laboratory. At Los Alamos his research interests spanned a wide range of topics including multinucleon transfer reactions, neutron pairing and Gamow-Teller strength in nuclei. Stein eventually broadened his field of research to include spectroscopy and mechanisms in heavy-ion-induced reactions, and he spearheaded the development and use of heavy-ion beams at the Los Alamos tandem Van de Graaff accelerator, where his group performed the first C14-induced reactions. Recently he had begun evaluating the use of kaon beams to probe nuclei. He also served for five years on the Los Alamos postdoctoral committee-two years as chairman.

Stein's colleagues knew him as a diligent scientist whose experimental work was characterized by care and precision. We will all miss the penetrating questions he invariably contributed to any discussion on any topic. Shalom, Nelson.

JEN-CHIEH PENG
JULES W. SUNIER
RONALD E. BROWN
DARRELL M. DRAKE
Los Alamos National Laboratory
Los Alamos, New Mexico

Abraham Goldberg

Abraham Goldberg, a staff physicist at Lawrence Livermore National Laboratory and an adjunct professor at the department of applied science of the University of California, Davis, died suddenly on 20 March 1987. He was 54 years old. He earned his BA in physics from New York University in 1955 and his PhD from Stanford

University in 1961. Goldberg, a theoretical physicist, had numerous publications in nuclear scattering theory and plasma spectroscopy. His last work included an elaborate computer algorithm that bypasses the sometimes tedious Racah algebra and gives a direct accounting for all the term energies and oscillator strengths for a spectral array. This method proves to be very useful for predicting spectral characteristics of hot plasmas.

Goldberg was an excellent teacher, a valuable student adviser and a very thorough researcher. His colleagues enjoyed working with him, and his zesty personality lent a lively atmosphere to physical discussions. He will be missed by his colleagues, students and friends.

BALAZS ROZSNYAI
STEWART BLOOM
Lawrence Livermore National Laboratory
Livermore, California

Richard H. Howe

Richard H. Howe, associate professor emeritus of Denison University in Granville, Ohio, passed away on 5 November 1986.

He was born in central Ohio in 1898 and was a 1920 graduate of Denison University. He began his teaching career following graduation, retiring in 1963 after 43 years of service including a term as department chairman. Following his retirement, he was involved with the physics program at the Newark campus of Ohio State University in 1964 and 1965.

He was a very early radio amateur (call letters W8YM), having received his license in 1916. For years he sponsored an amateur radio station at Denison University. In 1922 he founded the first radio broadcast station in central Ohio, WJD.

A longtime member of the American Association of Physics Teachers, he wrote the chapter on electronics in *The Taylor Manual* of advanced undergraduate experiments. Howe was an avid creator of lecture demonstrations dealing with electricity and electronics, and during the 1950s developed a prizewinning set of demonstrations on antennas, which he presented at numerous locations around the country.

During World War II Howe was a civilian employee of the government's Underwater Sound Laboratory in Boston, Massachusetts, and in Key West, Florida.

LEE E. LARSON
SAMUEL C. WHEELER JR
Denison University
Granville, Ohio