major increase. If faculty take advantage of collaborative efforts, modest college research need not be expensive. We agree that there are tradeoffs, but money is less a problem than time for most of us.

We certainly agree with Walstad on the importance of providing high-quality educational experiences for students not intending to major in physics. However, the topic of the June issue of PHYSICS TODAY was the education of professional physicists, and that is the reason for our emphasis. Our experience has been that many physicists and administrators are skeptical about the possibilities for doing successful research in colleges. This deters physicists who enjoy both research and teaching (and can pursue both with distinction) from applying for faculty positions in colleges. By providing concrete evidence for the existence of successful college research programs, we hoped to modify this prejudice.

Walstad implies that our case is substantially based on the existence of a correlation between the PhD productivity of colleges and their success in research as measured either by publications or by grant-getting. We made no such claim (though we think that there may be a correlation) because there does not appear to be valid quantitative evidence on which to base it. (We dispute Walstad's claim that data from our reference 6 may be used to show the absence of a correlation. The number of institutions is small, they were preselected for inclusion, and the data for PhD productivity and research success are for different periods.) Our argument that research activities are useful educational experiences for undergraduates does not depend on whether they choose the PhD path or not. However, we personally know many students who chose graduate study after a successful college research experience.

We would like to correct two errors in our article: We regret the omission of an award to Connecticut College from the list of Research Corporation grants. The grant is for studies of photon emission from collisional excitation of N₂O, NO₂ and SF₆. An error also appeared in the profile of Robert Warner of Oberlin College, whose research has received continuous outside support from the NSF since 1965 (not 1985).

JERRY GOLLUB Haverford College Haverford, Pennsylvania NEAL ABRAHAM Bryn Mawr College Bryn Mawr, Pennsylvania I was pleased that PHYSICS TODAY invited college teachers Jerry Gollub and Neal Abraham to write an article on the important role of college research in both fundamental physics and the education of scientists. Other readers who found the article interesting should be aware of the Council on Undergraduate Research, to which both authors belong, and of whose Physics Council I am president. It is an organization of college faculty who have joined together to encourage research efforts in the undergraduate environment. The directory Research in Physics and Astronomy at Private Undergraduate Institutions, referred to in their article, is available from Brian Andreen, Editor, 6840 East Broadway Boulevard, Tucson AZ 85710, for \$25 prepaid or \$30 charged. It provides useful information about the major private-college physics departments for use by graduate departments, employers, funding agencies, other colleges or high schools.

The CUR also publishes a thriceyearly newsletter to share ideas about college research efforts, including funding information and case studies. Subscriptions (\$22/year) may be ordered from Michael P. Doyle, Newsletter Editor, Council on Undergraduate Research, Department of Chemistry, Trinity University, San Antonio TX 78284

> James Cederberg St. Olaf College Northfield, Minnesota

Calibrating with bubbles

7/86

If the large-scale distribution of galaxies resembles the disposition of soap films in "the suds in the kitchen sink," as is compellingly indicated by Valerie de Lapparent, Margaret Geller and John Huchra's recent redshift survey (Physics today, May, page 17), we may eventually be afforded new handles on the old cosmological problems of the distance scale, expansion rate and global curvature of the universe.

Attempts to infer the cosmological distances of remote objects from their brightnesses or redshifts have remained uncertain owing to the possibility that the distribution of luminosities of objects or the rate of global expansion may have varied with the age of the universe. (What we see at great distances are necessarily in the remote past.) However, if we make the usual cosmological assumption that the Earth does not occupy a privileged position, then the sharply bounded cells or "bubbles" within which lumi-

nous galaxies are virtually absent should not on the average be elongated in directions that are systematically oriented with respect to their direction from the Earth. By fitting ellipsoids (or, in two-dimensional slices, ellipses) to the boundaries of apparently empty cells in surveys of the sort reported by de Lapparent, Geller and Huchra, we should eventually be able to use any systematic elongations or compressions along radial directions from the Earth to determine what correction of the distance scale, if any, is needed at each redshift to render the principal axes of the ellipsoids equal or, at least, uncorrelated with radial direction from the

Any residual dependence on distance of the average size of the cells would then furnish evidence concerning secular trends in the sizes of these cells over cosmological time.

Finally, for all cells within a given range of redshifts, the extent to which the average number of cells sharing a boundary with each individual cell deviates below or above 12 (the close packing number for Euclidean space) would indicate the extent to which the global curvature of the universe at the corresponding temporal epoch was positive or negative, respectively.

ROGER N. SHEPARD Department of Psychology Stanford University Stanford, California

6/86

That of dark matter

The news story on the "bubbly universe" (May, page 17) needs some additional clarification. Three primary theories are discussed in trying to account for this structure: primordial explosions, cold dark matter and hot dark matter (also called the "pancake theory"). Unfortunately, the interviews included in the theoretical section of the story quoted only proponents of the first two models. This may be related to the fact that Yakov Zel'dovich's group in the USSR is primarily associated with the third model, which is an appropriate one if any of the three(?) neutrinos has a small but finite mass.

Such models are often studied by numerical simulation. It is unknown whether such large voids as the bubbly universe appears to contain can form in the primordial explosion model by propagating explosions. The cold dark matter model does not produce large voids naturally. It is possible to reinterpret the model so as to cause some voids to appear; they of course must appear extremely commonly, as they seem to in the observational data. Note