The coupled-cluster method

Decomposing the wavefunction of a many-particle system
in terms of amplitudes for exciting clusters of a finite number of particles
yields a versatile and high-precision tool of many-body theory.

Raymond F. Bishop and Hermann G. Kimmel

Liquids and solids, atoms and mole-
cules, nuclei—all these clearly are in-
teracting many-body systems. Even a
nucleon may be regarded as a many-
particle system,' not just because it is
now known to consist of three quarks
interacting via gluons, but because of
the possibility in quantum field theory
of virtual excitation of many particles
from the vacuum. In the table page 56
we list some of the many-particle sys-
tems we encounter in the physical
world at length scales that range from
a few centimeters to a few fermis.
Many of these systems exhibit phenom-
ena—superconductivity in solids and
fission in nuclei, for example—whose
understanding does not follow immedi-
ately from knowledge of the constitu-
ents of the system and the interactions
among the constituents, but requires
new concepts and ideas. Many-body
physics is the branch of theoretical
physics that studies the new phenome-
na or “emergent properties” that arise
from interactions among “elementary”™
constituents of a many-particle system
and provides means and methods for
carrying out precise calculations of
such characteristic properties of these
systems as may be compared with
experimental results to verify hypoth-
eses about the nature of the constitu-
ents and their interactions.

The papers by Paul A. M. Dirac and
Werner Heisenberg on the symmetry
properties of the wavefunction of a
system of many identical particles laid
the foundations of quantum many-body
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theory soon after the formulation of
quantum mechanics. Since then, phys-
icists working in different areas have
developed a variety of methods and
techniques for obtaining approximate
but reliable estimates of the properties
of quantum many-body systems. In the
box on page 54 we briefly describe some
of these techniques. We have collected
in this box only those techniques that
have proved to be of more general
interest than the specific context or
problem for which they were first
developed. Indeed, we regard these
techniques as constituting the “toolbox
of theoretical physics” needed to attack
the many-body problem, because they
may be used to study any many-particle
system for which the interactions
among the constituents are known.
In this article we will discuss a
method of quantum many-body phys-
ics, the coupled-cluster method,® that
has proved extremely useful in a wide
variety of fields ranging from quantum
chemistry to nuclear physics. The
wavefunction of a quantum many-body
system is decomposed in this method in
terms of amplitudes for exciting clus-
ters of a finite number of particles.
Such a decomposition of the wavefunc-
tion is easy to interpret physically;
consequently, approximations made in
calculations using this method can be
systematically improved. In the table
on page 55 we compare the “tools™ of
many-body physics for range of applica-
bility, versatility with regard to inter-
actions and range of densities, and
precision. Clearly, the CCM works for
systems of both bosons and fermions
quite regardless of the type and range
of interaction, and yields high-preci-
sion results for the ground state as well
as low-energy excited states. We re-
gard it, therefore, as the “universal”
method of theoretical many-body phys-
ics. Although there are situations—for
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example, very-high-density fluids with
interparticle interactions containing
strong and relatively long-range repul-
sion at small distances followed by a
longer-ranged attractive tail—for
which the standard form of the CCM
has been found to be practically use-
less, we are sure that the method will
soon be extended to cover these situa-
tions. We will discuss below several
examples of results obtained with this
method and compare them with those
obtained with other methods.

High-precision techniques

The confidence we now feel in the
validity of quantum mechanics is de-
rived partly from our ability to solve
the many-particle Schrodinger equa-
tion for a complicated atom or molecule
to obtain, say, the energy spectrum
with such precision as is needed to
reproduce the experimental results ac-
curately. Such comparisons between
theoretical and experimental results
are indispensable to scientific progress.
To ensure that any comparison
between theory and experiment in
many-body physics is meaningful and
free from computational uncertainties,
we require that the methods of many-
body theory chosen to attack a given
problem be capable of yielding high-
precision results. This requirement is
often more important than such other
considerations as the ease of implemen-
tation and the computer time needed to
carry out an approximation procedure
numerically.

As an example of the kind of preci-
sion needed in many-body calculations
in quantum chemistry, consider the
ethylene molecule. The best available
estimate, obtained from the configura-
tion-interaction method, for the total
energy of this molecule is — 78.35451
hartrees, whereas the simplest approxi-
mation of many-body theory—the
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Hartree-Fock approximation—gives
—78.04520 hartrees. (A hartree, de-
fined as e*/a,, or about 27.2 eV, is the
natural unit in which to measure the
energy of an electron in an atom.)
Because the experimentally accessible
quantity, the energy released or ab-
sorbed in a chemical reaction, is a very
small fraction of molecular energies,
the difference, 0.30931 hartrees,
between the exact and Hartree-Fock
results, called the ‘“‘correlation ener-
gy,” is very important. For example,
the heat of formation of ethylene from
hydrogen and acetylene has been mea-
sured to be only 66.99 + 0.4 millihar-
trees (one millihartree equals 0.627
kilocalories per mole). Thus an ap-
proximate calculation of molecular en-
ergies must account for the “correla-
tion energy” and give a result within
0.01% of the exact energy.

Besides this minimum precision de-
manded of a theory for a meaningful
comparison of its results with experi-
ments, there is another aspect to the
need for high-precision calculations,
namely, to test the predictions of a
theory for any possible deviations from
experimental results that might indi-
cate new effects or phenomena not
accounted for by the theory. Quantum
electrodynamics, the quantum field
theory of electrons and photons, has
yielded the most accurate numbers of
any physical theory and is a good
example of the significance of high-
precision calculations. The accuracy of
better than one part in ten million to
which experimental and theoretical
values for the anomalous magnetic
moment of the electron, for example,
agree is irrefutable evidence in support
of the theory, in spite of the divergences
in it that could be overcome only with a
difficult renormalization procedure.

The history of the coupled-cluster
method reflects rather well some of the
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the last few decades. The method
appeared in nuclear physics' as early
as 1957, but it remained obscure for a
considerable period. From our present
vantage point, we see that this had
much to do with the fact that the sort of
high-precision calculations that the
CCM allows us to do were neither
fashionable nor considered necessary
at that time, because our understand-
ing of nuclear forces was then not very

Brueckner theory' is the only example
from those days of a theory that consid-
ered nuclear forces beyond a simple,
linear approximation and studied the
effect on nuclear properties of correla-
tions due to nonlinearities. The situa-
tion in quantum chemistry, however,
has been very different: Precise deter-
mination of molecular structures and
binding energies from a microscopic
quantum mechanical calculation has
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of the full many-body Hilbert space.

way.

A many-body theorist’s toolbox

Green's function Monte Carlo method: Solves the A-body Schrodinger equation
directly by stochastic simulation; typically used for fewer than about 250 particles.
Time-independent perturbation theory: Provides an expansion in powers of the
coupling constant; leads to Goldstone diagrams. Ultimately one neglects all terms that
are presumed to be unimportant or that cannot be handled.

Green's function method: A reformulation of time-dependent perturbation theory;
ultimately relies on an expansion in powers of the coupling constant. Formulated as time-
dependent equations for matrix elements describing the propagation of groups of
particles in the system; leads to Feynman diagrams.

Variational method: Computes the energy expectation value ¢H » with a trial wavefunc-
tion typically of Jastrow form. Various technigues exist to calculate (H> explicitly, for
example, Monte Carlo evaluations or the “hypernetied chain” approximation.
Correlated basis function method: A systematic improvement on the variational
method: enables short-range correlations to be incorporated from the start.
Configuration-interaction method: Diagonalizes the Hamiltonian in a finite subspace

Coupled-cluster method: See main text. Iterating the basic CCM equations yields time-
independent perturbation theory—although one need not solve the CCM equations this

been a problem of utmost importance
for many quantum chemists since the
development of the quantum theory of
the chemical bond. These quantum
chemists adopted® the CCM from nu-
clear physics and developed it in many
ways. When we look back at the results
obtained by this method in quantum
chemistry, we feel that the efforts of
quantum chemists in developing the
CCM have been eminently rewarded.
We will discuss below several examples
of condensed matter problems in which
the CCM has successfully been applied.
The method also has been recently
adapted to attack problems in quantum
field theory.

To avoid later misapprehension, we
stress from the start that the CCM is
not just a theory for the energies of
quantum mechanical ground-states of
“closed shell” systems, although this is
the form in which it was invented, and
which we now use for illustration
purposes.

The ground-state CCM

Consider the problem of obtaining
the ground-state wavefunction |%> and
energy E of a system of N interacting
fermions described by a quantum me-
chanical Hamiltonian operator H. That
is, we wish to solve the time-indepen-
dent Schrodinger equation

H|Y> = E|¥V) (1)

for the lowest eigenvalue £ and corre-
sponding eigenfunction ). Our pur-
pose here is only to discuss the basic
ideas of the CCM, and the exact repre-
sentation we develop below for the
ground-state wavefunction of a many-
fermion system serves this purpose
well. These ideas have been extended®
to obtain low-lying excited states, the
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dynamical response to external pertur-
bations and the exact sum rules the
response functions obey.

If the fermions in a many-body sys-
tem do not interact with one another,
then the only constraint on the many-
particle wavefunction is the Pauli ex-
clusion principle, which requires each
fermion to be in a different single-
particle eigenstate. The N-body
ground state in this simple case is
obtained by filling the N lowest single-
particle states as indicated in figure la.
The wavefunction is a sum of products
of the one-body wavefunctions of the
“occupied states.” The N!terms in this
sum differ only by pairwise permuta-
tions of the single-particle coordinates
and their signs are chosen so as to
maintain overall antisymmetry, de-
manded by Fermi-Dirac statistics, with
respect to interchange of any two
particles. This sum is most compactly
expressed in a determinantal form and
is called the “Slater determinant.”
The set of occupied levels is often
referred to as the “filled Fermisea.” In
the Hartree-Fock approximation that
we mentioned earlier, the interacting
many-particle system is replaced’ by
an “effective” noninteracting one, in
which each particle moves indepen-
dently in a potential well that is
determined self-consistently by the
average motion of all the particles.
Determination of the self-consistent
potential and solution of the Schro-
dinger equation for single-particle ei-
genstates in it are the major steps in
working out this approximation; once
the single-particle states in the self-
consistent potential are known, the
ground-state wavefunction and energy
are simply obtained by the method
outlined above for a system of noninter-

acting particles.

We now consider how the correla-
tions induced by interactions modify
this picture of the ground state as a
filled Fermi sea. The first thing one
may imagine happening is that two
particles interact and lift themselves
out of the Fermi sea, so that after the
interaction both particles are in orbi-
tals that in the previous simplified
picture were unoccupied (see figure 1b).
This process may be described by a
quantum mechanical operator S,
which acts on the Fermi sea wavefunc-
tion |®)> to produce the wavefunction
S.|®>, which describes two particles
outside the Fermi sea (and consequent-
ly two “holes™ inside it) and all remain-
ing N — 2 particles in their previous
orbitals. But it may also happen that
two pairs of particles do this completely
independently, as illustrated in figure
lc. Clearly, this process is described by
applying the operator S, twice, but
with the proviso that we must include a
statistical weighting factor (or multi-
plicity) of %z to avoid counting the pairs
twice. The resulting contribution to
the wavefunction is %S,?|®>. This
process of independent excitation of
pairs out of the Fermi sea may be
continued to obtain a contribution
(1/mhS,™ &> for the amplitude de-
scribing the excitation of m indepen-
dent pairs. By the principle of linear
superposition, the total amplitude for
the excitation of an arbitrary number
(including zero) of independent pairs is

T L8, by = eS|

i =0

Next we consider processes involving
simultaneous excitation of three parti-
cles, as in figure 1d. These may be



The tools of many-body theory

GFMC TIPT GF VAR

Main applications
Aloms (o) . .
Molecules (o) . .
Solids . L)
Gases (Mostly bosons) . .
Fluids (Mostly bosons) (w) .
Nuclei L] (o) .
Elementary particles .
Versatility
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interaction outside
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computer time and partially re-summed for QED)
for a moderately series)
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Ground state
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GFMC: Green's function Monte Carlo method
TIPT: Time-independent perturbation theory
GF: Green's lunction method

VAR: Variational method

CBF: Correlated basis function method
Cl: Configuration-interaction method
CCM: Coupled-cluster method

sum rules

described by a contribution S, |®> to
the exact wavefunction. As in the case
of simultaneous excitation of several
pairs of particles, there will be a
contribution (1/n!)S;" [®> from the si-
multaneous excitation of n indepen-
dent triplets. Now we must also ac-
count for the possibility of simulta-
neous excitation of pairs and triplets:
Again by linear superposition, the am-
plitude for independent simultaneous
excitation of m pairs and n triplets
from the Fermi sea is (1/m!n!)
%x8,™8;" |®>. Here we do not need to
worry about the ordering of the product
of operators S, and S; because they
describe independent processes and
therefore commute. Summing over all
possible values of m and n then leads to
the amplitude

erS2 + S,r|¢>

for !:he total effect of all pair and triplet
excitations. Proceeding in this way
with the excitation of clusters of 4,
9,..., N particles we arrive at a wave-
function

ers,+s,+...+s~n|¢>

In our discussion of the wavefunc-
tion, we did not consider the possibility
that_m the interaction of any subset of
Particles only one of them is finally
lifted out of the Fermi sea, whereas the
others remain inside. This is because

of a theorem® proved by David Thouless
that states that the most general deter-
minantal wavefunction |[®'> not or-
thogonal to a given Slater determinant
|P > has the form

[P = exp(S,)| P>

for some suitable choice of the operator
S,, which acts on |®) to produce a
“particle-hole” excitation. In other
words, the effect of allowing single
particles to be independently elevated
above the Fermi sea is equivalent to
changing the single-particle orbitals
that make up the Slater determinant.

In practical applications of the CCM
it is often desirable that the starting
determinantal wavefunction be as close
as possible to the exact wavefunction,
so that the correlations induced by
operators S,, S, ..., S, are small and
may be treated perturbatively. There-
fore, the single-particle orbitals are
often chosen in such a way that the
overlap of the Slater determinant with
the exact wavefunction is maximized.
If this condition is satisfied, it is no
longer necessary to consider single-
particle excitations separately.

The representation

W) = eS| ®)

we have obtained for the N-fermion
wavefunction is quite general since we
made no approximation in considering
the effect of interactions. But there is
one caveat. The wavefunction of equa-
tion 2 describes the ground state of the
interacting many-body system only if
the overlap of the starting Slater deter-
minant with the exact wavefunction is
nonzero; if the overlap is zero in spite of
the best possible choice of the single-
particle orbitals, it may mean that the
ground state of the interacting system
has different symmetries from those of
the noninteracting one and cannot be
obtained from the latter. However,
there are extensions of the CCM to
handle such cases.”

John Hubbard® may have been the
first to notice that the operator gener-
ating the wavefunction of a quantum
many-body system has an exponential
form, like the one we obtained in
equation 2. Hubbard's ideas also apply
to the representation of eigenstates in
quantum field theory.” This gives us a
reason to hope that the ideas of the
CCM that we used to obtain equation 2
might also prove useful in quantum
field theory.

This exponential representation may
be regarded as an expansion of the
exact wavefunction in a complete or-
thonormal basis, but it is more useful to
keep in mind the arguments we used to
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Examples of many-body systems

System Particles

Molecular clusters

Rare gas atom clusters
Metallic atom clusters
Atoms and molecules
Nuclei

Electrons and nuclei

Nucleons

Nucleons and mesons
Quarks and gluons
Nucleons and other hadrons Quarks and gluons

Alpha particles (4 = 22)

Interaction

CO, molecules, for example Van der Waals type forces (repulsive core

plus attractive tail)

He or Ar atoms, for example Interatomic potentials such as van der Waals
Na or Ag atoms, for example Interatomic potentials

Coulomb potentials

Infinite Limit
Gases, fluids, molecular crystals

Rare gas liguids, crystals
Metallic crystals
Infinite Thomas—Fermi atom

Two-body phenomenological potentials (repulsive core Alpha matter

plus attractive tail), also sometimes 3-body potentials

Two-body phenomenological potentials (repulsive core “Standard” nuclear matter
plus attractive tail); also sometimes 3-body potentials

Meson exchange
Hints from QCD
aco

Nuclear matter as “baryon-meson soup”
Quark matter
Already there

obtain it and regard it as a cluster
decomposition of quantum mechanical
amplitudes. Such an interpretation is
very useful in practical applications of
the CCM (see below). Moreover, when
this cluster picture is combined with
the probabilistic interpretation of
quantum mechanics, the exponential
form of the operator acting on the
Slater determinant, and the represen-
tation of the operator S in the exponent
as a linear sum of operators generating
excitations involving clusters of finite
numbers of particles, becomes clear:
This form of the many-particle wave-
function is a direct consequence of the
law of probability theory that states
that the probability of statistically
independent processes is a product of
the probabilities of the individual pro-
cesses. The partition function of classi-
cal statistical mechanics, from which
all thermodynamic functions may be
derived, is also computed in the Ursell-
Mayer cluster expansion® by studying
independent clusters of a given size,
and it also has an exponential form
provided the statistical multiplicities of
various cluster processes are properly
taken into account.

The problem of finding the ground-
state energy and wavefunction of the
N-fermion system is reduced in the
CCM to computing the operators S, —
or, in practice, their matrix elements.
The configuration-interaction method,
by contrast, uses combinations of clus-
ters instead of the clusters described by
the S, themselves, with the result that
numerical instabilities arise for large
particle numbers N. In the perturba-
tion methods, the quantity of interest is
expanded in powers of an effective
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“coupling constant™ of the interactions
in the system, which works best when
the coupling constant is small. Only a
few realistic systems of interest, such
as quantum electrodynamics, satisfy
this condition, however. In other per-
turbative calculations one must have
some intuition about the important
terms in the perturbation series.
There exist many examples where very
reasonable-sounding arguments for
what “the next most important set of
terms or diagrams” is have simply
proved either incorrect or—what is
often tantamount to the same thing—
incomplete. We will discuss below how
to generate approximate solutions to
the CCM equations and compare these
approximations with those in perturba-
tion theory.

The CCM equations for the matrix
elements of 8§, are easily found by
projecting the Schrodinger equation

e SHeS|d) = E| P> (3)

onto the complete N-body space
spanned by the Fermi sea states and
those states obtained by creating n
general particle-hole excitations out of
it. This yields a series of coupled
equations, each of which contains a
finite number of terms. The first equa-
tion in this series immediately yields
an expression for £. Due to the special
form of the Schrodinger equation given
in equation (3), the remaining equa-
tions do not involve the energy E or
other macroscopic terms, and repre-
sent a truly microscopic decomposition
of the Schrodinger equation into a set
of coupled equations that describe the
dynamics of the n-body clusters. These
equations are intrinsically nonlinear.

In the familiar example of pairwise
interactions, matrix elements of the
operators S, may appear raised up to
the fourth power, and the equation for
the matrix elements of S, is coupled to
equations for all S, with 1 less than or
equal to n + 2. By formally iterating
these equations in powers of the inter-
action potential, one may immediately
regain the individual terms of the time-
independent perturbation theory, ex-
pressed in terms of the linked-cluster
expansion of Jeffrey Goldstone.” We
would like to stress, however, that this
is never necessary for the actual solu-
tion of our equations. In fact, the
perturbative expansion very often
shows divergences, even when the CCM
equations have solutions. This hap-
pens because the CCM achieves a natu-
ral grouping of terms in the perturba-
tion series that overcomes the diver-
gences in individual terms.

Approximation schemes

Few realistic models of many-parti-
cle systems are exactly solvable and, in
spite of the exact formulation we dis-
cussed above for the ground-state ener-
gy and wavefunction in the CCM, we
have to resort to some approximation
schemes to solve the coupled equations.
We noted above how the coupled equa-
tions of the CCM generate the terms of
the time-independent perturbation the-
ory—a very widely used approximation
scheme in many-body theory that
works best when the interactions are
weak. However, a great advantage of
the CCM is that the physical interpre-
tation of the wavefunction readily
lends itself to approximation schemes
that are motivated by the physics of the



problem rather than by mathematical
convenience. For instance, one may
argue that for relatively “low density”
or relatively “weakly interacting” sys-
tems, only comparatively rarely do
more than a few particles come togeth-
er to lift themselves simultaneously out
of the Fermi sea—the actual number
may be as low as 2 or 3 (see figure 2).
This results in the so-called “natural,”
or SUBn, approximation hierarchy, in
which all clusters with more than n
particles are neglected and the remain-
ing n coupled equations are solved as
accurately as possible. This approach
has proven extremely successful for
atomic and molecular systems. The
SUB2 approximation—the next step
beyond the Hartree—Fock approxima-
tion if the single-particle excitations
are absorbed into the Hartree-Fock
orbitals—contains as drastic sub-ap-
proximations to itself such other famil-
iar approximations as

» The Bethe-Goldstone approxima-
tion that sums the so-called particle-
particle ladder diagrams that describe
the repeated scattering of two particles
inside the many-body medium

P The analogous Galitskii approxima-
tion that also includes all hole-hole and
mixed particle-particle and hole-hole
ladder terms

» The random-phase approximation.
We note that the SUB2 approximation
also contains terms that include in the
last two cases, for example, the effects
in the intermediate scattering states.
These terms arise from the fact that the
particles and holes both move in the
(self-consistent) potentials due to the
rest of the medium. Thus, the whole of
the usual Brueckner—Bethe-Goldstone

the other particles.

theory applied so often to nuclear
matter and finite nuclei is also imbed-
ded in the SUBZ2 approximation. Fur-
thermore, the SUB2 approximation is
richer even than the fully self-consis-
tent union of all the above approxima-
tions: It also contains classes of parti-
cle-hole ladder terms and extra ex-
change terms to preserve the overall
antisymmetry imposed by the fermion
statistics—but for fuller details we
must refer the reader to the litera-
ture,'"

There are a variety of other approxi-
mation schemes, some tailor-made to
deal with a specific situation: For
example there is the so-called hard-core
scheme (HC-SUBn) to deal with inter-
particle forces that contain a very
strong repulsive core, as in nuclear
physics; another scheme has been ap-
plied with great success to systems,
such as electrons in solids, in which the
interparticle forces are long range.
Instead of describing these and other
approximations in detail, let us just say
that there now exists a considerable
body of experience that one may refer
to when selecting the approximation
within the CCM that will be most
suitable for a given problem.

Results from CCM

We now review some of the results
obtained by using the CCM, and exam-
ine how it compares with other meth-
ods in solving real problems.
Quantum chemistry. The coupled-clus-
ter method is now regarded as one of
the standard methods of quantum
chemistry, and it is the method of first
choice in nearly all cases where it can
be employed. We quote here only one

Interactions. In a many-body system a
given particle typically interacts, on
average, with relatively few other particles,
unless the entire system is strongly phase
ordered in some way. Here a cluster of
five immediate neighbors surrounds the
green particle. In many real systems such
a "correlation cluster” effectively screens
out the central particle's interactions with

Figure 2

example of the many applications of
the CCM in quantum chemistry: the
problem of obtaining the binding ener-
gy of the LiH molecule. But this
example illustrates quite well that one
can overcome most of the difficulties
that one encounters in CCM calcula-
tions.

For a molecule with a complex geom-
etry, even the determination of a good
starting determinantal wavefunction
|® ) via, for example, the Hartree-Fock
self-consistent field equations is al-
ready a major task. Selving this prob-
lem by itself constitutes a “major in-
dustry” in quantum chemistry, but
these efforts cannot yield high-preci-
sion numbers because they do not
include the correlations induced by S.,
S.,.... In many cases the correlation
energy is small and can be adequately
handled by relatively straightforward
perturbation theory, if a good starting
determinant is available. The full pow-
er of the CCM is not needed in such
cases. But only the CCM seems to work
efficiently when the correlations are
large. Lithium hydride is an example
of a many-body system for which it is
very difficult to obtain a good starting
determinant or in which the matrix
elements of some of the §, are intrinsi-
cally large. We call such systems
“decisive systems.” We hope that the
good results obtained for LiH will
convince the reader of the true power of
the CCM.

The short-distance singularity of the
Coulomb interaction between elec-
trons, which has the effect of producing
cusps in the wavefunction, is also a
feature that needs special attention
when choosing the single-particle orbi-
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tals for the basis in which the equations
of the CCM are expanded. In quantum
chemistry, the standard choice for the
basis states is the complete set of
orbitals from the lowest of which the
Slater determinant itself is composed.
However, the singular cusps in the
wavefunction are not suitably repre-
sented by an expansion in a small
number of single-particle orbitals and
often cause instabilities in numerical
solutions of the equations of the CCM.
To circumvent this problem, the newer
techniques employ the so-called ge-
minal expansions, in which the single-
particle orbitals are replaced by expli-
citly correlated functions. The typical
geminal thus comprises the product of
a pair of single-electron orbitals togeth-
er with a factor (typically of Gaussian
form) that depends explicitly on the
distance between the two electrons.
This change in basis has the effect of
reducing by many orders of magnitude
the number of terms needed for a given
level of accuracy in representing the
cluster amplitudes. Consequently the
amount of computer time needed for a
given accuracy is also reduced, al-
though not by the same factor because
the geminal basis is itself more compli-
cated. Results for the LiH molecule
that we discuss below were obtained
using a geminal basis."'

At the SUB2 level of approximation
the CCM yields 8.06867 hartrees for the
total binding energy of the LiH mole-
cule, compared with the exact value of
8.07036 + 0.0001 hartrees. (The exact
value is obtained from the best experi-
mental and theoretical estimates.) The
Hartree-Fock energy accounts for
7.98716 hartrees, so that out of a
correlation energy of — 83.2 millihar-
trees, the CCM misses only 1.69 milli-
hartrees. Thus the CCM succeeds in
achieving accuracy on the order of a
millihartree already at the SUB2 level.
As discussed in the beginning, such an
accuracy is the goal of many-body
calculations in quantum chemistry.
Furthermore, we know how to improve
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the calculation systematically, by con-
sidering the correlations induced by
higher S, .

As an example of how the computer
time needed in CCM calculations com-
pares with other methods, we return to
the ethylene molecule. This is also a
decisive system in the sense defined
earlier. Increasing the distance
between the two carbon atoms by
approximately 50% beyond the equilib-
rium value causes the atomic configu-
ration to change from a planar to a
“twisted” nonplanar structure. In oth-
er words the system even in equilibri-
um is nearly degenerate, and there are
two quite different Slater determinants
in competition with each other. For
this molecule there exists a benchmark
configuration-interaction calculation
using more than a million configura-
tions, which naturally consumes a con-
siderable amount of computer time.
We quoted above the extremely good
results obtained from this calculation.
The CCM yields practically the same
accuracy with roughly a tenth of the
computer time.'* This example is now
quite typical in quantum chemistry
applications. Of course, had the same
computer time been allotted to the
CCM calculation, the increase in accu-
racy over the configuration-interac-
tion calculation would have been ap-
preciable. Conversely, even if the time
were reduced by a factor of 10, the CCM
calculations would still yield results of
good quality.

Nuclear physics. To demonstrate the
efficiency of the CCM in solving prob-
lems in nuclear physics, we consider a
problem for which exact results also
exist: a model for the alpha particle
that uses for the internucleon force a
purely central (and hence grossly over-
simplified) form known as the Malfliet-
Tjon V force. The four nucleons of the
alpha particle move in this state-inde-
pendent force as if they were bosons,
because they must be in different spin—
isospin states. In this special case the
four-body Schrodinger equation could

be solved by Green's function Monte
Carlo techniques to provide a bench-
mark result that is essentially exact,
apart from small statistical errors that
may in principle be made as small as
we please.'”

In the box on page 60 we compare the
“exact” Green's function Monte Carlo
results with the CCM results, HC-SUB2
and HC-SUBS3, obtained at the second
and third levels, respectively, of the
approximation scheme already men-
tioned, and also with the results of a
typical good variational calculation.
We note that the variational calcula-
tion, although it is quite accurate and
efficient to carry out on a computer,
cannot be regarded as a high-precision
method, because to improve on the
results for this method quoted in the
box, by using correlated basis function
techniques, for example, dramatically
extends both its difficulty and the time
needed for its implementation. We
may also point out here that there are
formal techniques available to solve
the quantum-mechanical four-body
problem exactly. These techniques
have been applied to this model, giving
an energy of only — 28 MeV, rather
than the benchmark result of —31
MeV. This “exact” calculation took
many hours of computing time (on the
scale used in the table on page 60 and
used some of the best numerical ap-
proximations that could be implemen-
ted in the available time. There is a
wider lesson for many-body theory
here: Successive levels of approxima-
tion of a high-precision method that is
capable of systematic improvement
may in practice be preferable to a one-
shot implementation of an exact meth-
od.

Electron gas. The electron gas, or
“jellium,” is an idealized infinite homo-
geneous system of electrons together
with an inert background of homogen-
eous positive charge to ensure charge
neutrality, and provides a simple model
for conduction electrons in solids. It
may well lay claim to being the most
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rapidly. That none of the two-body potentials reproduces the experimental value suggests
that nuclei are not many-nucleon systems in which the nucleons interact only via two-body

potentials.

studied of all quantum many-body
problems. A Green's function Monte
Carlo calculation with small statistical
errors (and, to the best of our belief,
negligible systematic errors) is even
available for this system, made possible
by the special nature of the Coulomb
interaction. (Few many-fermion sys-
tems have been studied using the
Monte Carlo methods.)

As already mentioned, a rather so-
phisticated approximation scheme has
been found in the CCM to deal with the
long range of the Coulomb potential.
This approximation also makes it possi-
ble to include the important three- and
four-body cluster effects without actu-
ally solving the CCM equations for
three- and four-body subsystems. Be-
cause of strong correlations in this
system, three- and four-body cluster
effects are very imporant in high-
precision applications of the CCM. In
the box on page 60 we compare results
for the correlation energy at various
values of the density (parameterized by
the dimensionless coupling constant r. ,
the average interelectron spacing in
units of the Bohr radius). We have not
Quoted in this table results for the
electron gas obtained by methods other
than the Green’s function Monte Carlo.
t['he numerical CCM results are in fact
In better agreement with the “exact”
Green's function Monte Carlo data
than those of any other numerical
calculation,

Anharmonic oscillators. Various one-
dimensional anharmonic oscillators
have been widely studied'® lately be-
cause they provide simple models of

Figure 3

nonlinear quantum field theories. The
Hamiltonian for the well-studied exam-
ple of the quartic anharmonic oscillator
is

H = "a(p* + q°) + Aq*

where q is the coordinate operator on
the infinite line and p is the corre-
sponding canonical momentum. Carl
Bender and Tai T. Wu have shown that
perturbation theory diverges in this
case for all values of the coupling
constant A. The problem can be solved
by direct diagonalization, but good
accuracy requires very large matrices
and corresponding computer power. In
the box on page 60 we indicate the
results obtained with the CCM in var-
ious approximations including only S,
and S,—clusters of odd numbers of
particles cannot occur in this case. The
CCM equations are so simple that the
results quoted in the box, except per-
haps for the last one, can be obtained on
a good programmable pocket calcula-
tor.

CCM and the nuclear force

As an example of the kind of insights
that precise and detailed calculations
made possible by the CCM provide, we
return to nuclear physics and examine
the status of our understanding of
nuclear forces in nuclei. It has been
recognized for a long time that meson
exchanges between nucleons (for the
sake of simplicity, we ignore quarks
here) play an important role in holding
the nucleus together. However, be-
cause these processes are not well
understood, it has been common prac-

tice since the early days of nuclear
phenomenology to use two-body poten-
tials to represent the interaction medi-
ated by meson exchange. These two-
body potentials were obtained from
experiments on nucleon-nucleon scat-
tering and although they reproduce the
two-body scattering data quite accu-
rately, they ignore the possibility of
new exchange effects—in the three-
nucleon problem, for example—that
cannot be reduced to a sum of two-body
exchanges.

Is the nuclear force inside nuclei well
represented by these two-body poten-
tials? Or are there many-body effects
that even the best of two-body poten-
tials cannot account for? These ques-
tions could not be definitively answered
until about ten years ago because
calculations of nuclear properties using
two-body potentials were not accurate
enough to determine whether any dis-
crepancy between calculated and mea-
sured values was due to the approxima-
tions made in the calculations or was
evidence for many-body effects. But
there now exist exact solutions of the
three-body problem'” as well as high-
precision CCM calculations on various
heavier nuclei” that fail to reproduce
experimental data even when the best
available two-body potentials are used.
In figure 3 we show the results obtained
from one such calculation for the
ground-state energy of the closed-shell
nucleus 0', The CCM shows good
convergence in this case—truncating
the method at three- and four-particle
clusters, respectively, gives almost
identical results. The large difference
between experimental and calculated
values in figure 3 leads to the inescap-
able conclusion that nuclei are not
many-nucleon systems in which the
nucleons interact via two-body poten-
tials. This may have been suspected for
a long time but these calculations offer
the first definitive and quantitative
evidence that a picture of the nucleus
based on two-body forces between nu-
cleons will not serve as an adequate
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Results from the coupled-cluster method

We present here comparisons of the results for three problems: the energy of an alpha
particle, the correlation energy of an electron gas and the energy levels of an anharmonic
oscillator. In each case the coupled-cluster method gives results that are very good
indeed because an immense amount of (possibly collective) virtual excitations have been
accounted for.

Nuclear physics .
The table below shows the energy £ and mass radius r,,, for the alpha particle calculated
with the so-called Malfliet-Tjon V potential, using various methods. The calculations are
described in the text, and the column labeled “time" gives an indication of the computing
time needed to implement them on a mainframe (CDC7600) computer.

Energy Mass radius Time
Method (MeV) (fm) (sec)
Green's function Monte Carlo -313+02 1.36 + 0.01 3600
Coupled-cluster (HC-SUB2) —30.24 1.41 20
Coupled-cluster (HC-SUB3) —-31.24 1.36 300
Variational —30.7 — 30

Electron gas
We compare the correlation energy of the three-dimensional electron gas computed with
the coupled-cluster method with that computed with the Green's function Monte Carlo
method, for various values of the dimensionless coupling constant r, defined in the text.
The energies are given in millirydbergs.
Coupling constant r,

Method 1 2 5 10 20

Green's function Monte Carlo —120 —-902 -—-56.3 —37.22 —23.00

Coupled-cluster (SUB4) —-122 -904 -560 -370 —236

Anharmonic oscillator

We compare the maximal deviations from the exact results in the energies of the ground
and first two excited states of the quartic anharmonic oscillator with the coupling constant
A positive and less than 1000, for various coupled-cluster calculations.

» The standard coupled-cluster method SUB4 built on the vacuum state |0}, that is,
|'¥» =e% |0y, gives an error less than 3%.

» Starting with a trial state |#) = e*+|0) and optimizing for minimal energy, then using
SUB4 on |®), that is, |¥)» =e%: *S«|®), gives an error less than 0.25%.

» Starting with a trial state &> = e%+|0> and optimizing for minimal energy, followed by
diagonalization of a 3 x 3 matrix in the obvious basis built on |®), gives an error less than
1%.

» Starting with a trial state |®) = e®+|0) and optimizing for minimal energy, followed by
diagonalization of a 10« 10 matrix in the obvious basis built on |®}, gives an error less

than 10 *%.

model even for the ground-state proper-
ties of the simplest nuclei.

We hope that the few results we
discussed above have convinced the

reader of the power and versatility of

the CCM. The method also has a great
aesthetic appeal: At a time when the
increasing diversity of phenomena that
fall within the scope of physics has
forced physicists to specialize in ever
smaller subfields, it is heartening to
have a method whose ideas have proved
fruitful in almost all studies of many-
body systems. We would like to con-
clude by saying that the method may
also be extended into the arena of
elementary particle physics and field
theory. Of course, as has been the case
in nuclear physics, it may take some
time before the method is fully estab-
lished and accepted in this field. As in
other areas of physics in the past, there
is certainly a need now in elementary
particle physics for results accurate at
the 1% level. We are sure that when
suitably developed, the CCM will also
succeed here as a powerful tool.
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